試卷征集
加入會(huì)員
操作視頻

我們定義:如圖1,在△ABC中,把AB繞點(diǎn)A順時(shí)針旋轉(zhuǎn)α(0°<α<180°)得到AB′,把AC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)β得到AC′,連接B'C',當(dāng)α+β=180°時(shí),我們稱△AB'C′是△ABC的“旋補(bǔ)三角形”,△AB'C′邊B'C'上的中線AD叫做△ABC的“旋補(bǔ)中線”,點(diǎn)A叫做“旋補(bǔ)中心”.
【閱讀材料】(1)如圖2,在△ABC中,若AB=8,BC=4.求AC邊上的中線BD的取值范圍.是這樣思考的:延長(zhǎng)BD至E.使DE=BD,連結(jié)CE,利用全等將邊AB轉(zhuǎn)化到CE,在△BCE中利用三角形三邊關(guān)系即可求出中線BD的取值范圍,則中線BD的取值范圍是
2<BD<6
2<BD<6
;
【問題探索】(2)如圖1,△AB'C′是△ABC的“旋補(bǔ)三角形”,AD是△ABC的“旋補(bǔ)中線”,請(qǐng)仿照上面材料中的方法,探索圖1中AD與BC的數(shù)量關(guān)系,并給予證明;
【拓展運(yùn)用】(3)如圖3,當(dāng)α=β=90°時(shí),△AB'C′是△ABC的“旋補(bǔ)三角形”,AE⊥BC,垂足為點(diǎn)E,AE的反向延長(zhǎng)線交B'C′于點(diǎn)D,若AB=10,AC=6,試求解AD的取值范圍.
菁優(yōu)網(wǎng)

【考點(diǎn)】幾何變換綜合題
【答案】2<BD<6
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/10/19 6:0:3組卷:328引用:3難度:0.2
相似題
  • 菁優(yōu)網(wǎng)1.如圖,在等邊△ABC中,點(diǎn)D在BC邊上,點(diǎn)E在AC的延長(zhǎng)線上,且DE=DA.
    (1)求證:∠BAD=∠EDC;
    (2)點(diǎn)E關(guān)于直線BC的對(duì)稱點(diǎn)為M,聯(lián)結(jié)DM,AM.
    ①根據(jù)題意將圖補(bǔ)全;
    ②在點(diǎn)D運(yùn)動(dòng)的過程中,DA和AM有什么數(shù)量關(guān)系并證明.

    發(fā)布:2024/12/23 14:0:1組卷:257引用:2難度:0.2
  • 菁優(yōu)網(wǎng)2.如圖,點(diǎn)M為矩形ABCD的邊BC上一點(diǎn),將矩形ABCD沿AM折疊,使點(diǎn)B落在邊CD上的點(diǎn)E處,EB交AM于點(diǎn)F,在EA上取點(diǎn)G,使EG=EC.若GF=6,sin∠GFE=
    4
    5
    ,則AB=

    發(fā)布:2024/12/23 8:0:23組卷:411引用:2難度:0.1
  • 3.閱讀下列材料,完成相應(yīng)任務(wù).
    【探究三角形中邊與角之間的不等關(guān)系】
    學(xué)習(xí)了等腰三角形,我們知道在一個(gè)三角形中,等邊所對(duì)的角相等;反過來,等角所對(duì)的邊也相等,那么,不相等的邊所對(duì)的角之間的大小關(guān)系怎樣呢?大邊所對(duì)的角也大嗎?下面是奮進(jìn)小組的證明過程.
    如圖1,在△ABC中,已知AB>AC.求證∠C>∠B.
    菁優(yōu)網(wǎng)
    證明:如圖2,將△ABC折疊,使邊AC落在AB上,點(diǎn)C落在AB上的點(diǎn)C'處,折痕AD交BC于點(diǎn)D.則∠AC'D=∠C.
    ∵∠AC'D=
    +∠BDC'(三角形外角的性質(zhì))
    ∴∠AC'D>∠B
    ∴∠C>∠B(等量代換)
    類似地,應(yīng)用這種方法可以證明“在一個(gè)三角形中,大角對(duì)大邊,小角對(duì)小邊”的問題.
    任務(wù)一:將上述證明空白部分補(bǔ)充完整;
    任務(wù)二:上述材料中不論是由邊的不等關(guān)系,推出角的不等關(guān)系,還是由角的不等關(guān)系推出邊的不等關(guān)系,都是轉(zhuǎn)化為較大量的一部分與較小量相等的問題,再用三角形外角的性質(zhì)或三邊關(guān)系進(jìn)而解決,這里主要體現(xiàn)的數(shù)學(xué)思想是
    ;(填正確選項(xiàng)的代碼:?jiǎn)芜x)
    A.轉(zhuǎn)化思想
    B.方程思想
    C.?dāng)?shù)形結(jié)合思想
    任務(wù)三:根據(jù)上述材料得出的結(jié)論,判斷下列說法,正確的有
    (將正確的代碼填在橫線處:多選).
    ①在△ABC中,AB>BC,則∠A>∠B;
    ②在△ABC中,AB>BC>AC,∠C=89°,則△ABC是銳角三角形;
    ③Rt△ABC中,∠B=90°,則最長(zhǎng)邊是AC;
    ④在△ABC中,∠A=55°,∠B=70°,則AB=BC.

    發(fā)布:2024/11/22 8:0:1組卷:188引用:2難度:0.4
小程序二維碼
把好題分享給你的好友吧~~
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
本網(wǎng)部分資源來源于會(huì)員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請(qǐng)立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個(gè)工作日內(nèi)改正