概率論起源于博弈游戲.17世紀(jì),曾有一個(gè)“賭金分配“的問題:博弈水平相當(dāng)?shù)募?、乙兩人進(jìn)行博弈游戲每局比賽都能分出勝負(fù),沒有平局.雙方約定,各出賭金48枚金幣,先贏3局者可獲得全部賭金;但比賽中途因故終止了,此時(shí)甲贏了2局,乙贏了1局.向這96枚金幣的賭金該如何分配?數(shù)學(xué)家費(fèi)馬和帕斯卡都用了現(xiàn)在稱之為“概率“的知識,合理地給出了賭金分配方案.該分配方案是( )
【考點(diǎn)】相互獨(dú)立事件的概率乘法公式.
【答案】C
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/5/10 8:0:9組卷:324引用:6難度:0.8
相似題
-
1.若P(A)=0.2,P(B)=0.7且A與B相互獨(dú)立,則P(AB)=( ?。?/h2>
發(fā)布:2024/8/3 8:0:9組卷:196引用:3難度:0.9 -
2.甲、乙同時(shí)參加某次法語考試,甲、乙考試達(dá)到優(yōu)秀的概率分別為0.6,0.7,兩人考試相互獨(dú)立,則甲、乙兩人都未達(dá)到優(yōu)秀的概率為( )
發(fā)布:2024/8/12 14:0:1組卷:216引用:5難度:0.8 -
3.已知事件A,B相互獨(dú)立,且P(A)=0.3,P(B)=0.7,則P(AB)=( )
發(fā)布:2024/10/12 10:0:1組卷:138引用:1難度:0.7
把好題分享給你的好友吧~~