我們知道,平行四邊形的對邊平行且相等,利用這一性質(zhì),可以為證明線段之間的位置關(guān)系和數(shù)量關(guān)系提供幫助.
重溫定理,識(shí)別圖形
(1)如圖①,我們在探究三角形中位線DE和第三邊BC的關(guān)系時(shí),所作的輔助線為“延長DE到點(diǎn)F,使EF=DE,連接CF”,此時(shí)DE與DF在同一直線上且DE=12DF,又可證圖中的四邊形BCFDBCFD為平行四邊形,可得BC與DF的關(guān)系是平行且相等平行且相等,于是推導(dǎo)出了“DE∥BC,DE=12BC”.
尋找圖形,完成證明
(2)如圖②,四邊形ABCD和四邊形AEFG都是正方形,△BEH是等腰直角三角形,∠EBH=90°,連接CF、CH.求證CF=2BE.
構(gòu)造圖形,解決問題
(3)如圖③,四邊形ABCD和四邊形AEFG都是菱形,∠ABC=∠AEF=120°,連接BE、CF.直接寫出CF與BE的數(shù)量關(guān)系.
1
2
1
2
2
【考點(diǎn)】四邊形綜合題.
【答案】BCFD;平行且相等
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/30 8:0:9組卷:1484引用:3難度:0.2
相似題
-
1.我們知道,一個(gè)正方形的任意3個(gè)頂點(diǎn)都可連成一個(gè)等腰三角形,進(jìn)一步探究是否存在以下形狀的四邊形,它的任意3個(gè)頂點(diǎn)都可連成一個(gè)等腰三角形:
(1)不是正方形的平行四邊形;
(2)梯形;
(3)既不是平行四邊形,也不是梯形的四邊形.
如果存在滿足條件的四邊形,請分別畫出(只需各畫一個(gè),并說明其形狀或邊、角關(guān)系特征,不必說明理由).發(fā)布:2025/1/2 8:0:1組卷:7引用:1難度:0.2 -
2.如圖,∠BOD=45°,BO=DO,點(diǎn)A在OB上,四邊形ABCD是矩形,連接AC,BD交于點(diǎn)E,連接OE交AD于點(diǎn)F.下列4個(gè)判斷:①OE⊥BD;②∠ADB=30°;③DF=
AF;④若點(diǎn)G是線段OF的中點(diǎn),則△AEG為等腰直角三角形,其中,判斷正確的是 .(填序號(hào))2發(fā)布:2024/12/23 18:30:1組卷:1468引用:7難度:0.3 -
3.四邊形ABCD是矩形,點(diǎn)E是射線BC上一點(diǎn),連接AC,DE.
(1)如圖1,點(diǎn)E在邊BC的延長線上,BE=AC,若∠ACB=40°,求∠E的度數(shù);
(2)如圖2,點(diǎn)E在邊BC的延長線上,BE=AC,若M是DE的中點(diǎn),連接AM,CM,求證:AM⊥MC;
(3)如圖3,點(diǎn)E在邊BC上,射線AE交射線DC于點(diǎn)F,∠AED=2∠AEB,AF=4,AB=4,則CE=.(直接寫出結(jié)果)5發(fā)布:2024/12/23 18:30:1組卷:1408引用:10難度:0.4
把好題分享給你的好友吧~~