如圖,P是拋物線C:y=12x2上一點,直線l過點P并與拋物線C在點P的切線垂直,l與拋物線C相交于另一點Q.
(Ⅰ)當點P的橫坐標為2時,求直線l的方程;
(Ⅱ)當點P在拋物線C上移動時,求線段PQ中點M的軌跡方程,并求點M到x軸的最短距離.
1
2
【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:636引用:3難度:0.5
相似題
-
1.數(shù)學家歐拉于1765年在他的著作《三角形的幾何學》中首次提出定理:三角形的外心(三邊中垂線的交點)、重心(三邊中線的交點)、垂心(三邊高的交點)依次位于同一直線上,且重心到外心的距離是重心到垂心距離的一半,這條直線被后人稱之為三角形的歐拉線.已知△ABC的頂點為A(0,0),B(5,0),C(2,4),則該三角形的歐拉線方程為( ?。?/h2>
A.x+2y-5=0 B.x-2y-5=0 C.2x+y-10=0 D.2x-y-10=0 發(fā)布:2024/11/12 21:0:2組卷:731引用:10難度:0.5 -
2.已知0<k<4直線L:kx-2y-2k+8=0和直線M:2x+k2y-4k2-4=0與兩坐標軸圍成一個四邊形,則這個四邊形面積最小值時k值為( ?。?/h2>
A.2 B. 12C. 14D. 18發(fā)布:2024/12/29 2:0:1組卷:324引用:7難度:0.7 -
3.數(shù)學家歐拉于1765年在他的著作《三角形的幾何學》中首次提出定理:三角形的外心(三邊中垂線的交點)、重心(三邊中線的交點)、垂心(三邊高的交點)依次位于同一直線上,且重心到外心的距離是重心到垂心距離的一半,這條直線被后人稱之為三角形的歐拉線.已知△ABC的頂點為A(0,0),B(5,0),C(2,4),則該三角形的歐拉線方程為( ?。?br />注:重心坐標公式為橫坐標:
;縱坐標:x1+x2+x33y1+y2+y33A.2x-y-10=0 B.x-2y-5=0 C.2x+y-10=0 D.x+2y-5=0 發(fā)布:2024/10/25 1:0:1組卷:69引用:1難度:0.6