中國古代的蹴鞠游戲中的“蹴”的含義是腳蹴、踢,“鞠”最早系外包皮革、內(nèi)飾米糠的球,因而“蹴鞠”就是指古人以腳蹴、踢皮球的活動,如圖所示.已知某“鞠”的表面上有四個(gè)點(diǎn)P,A,B,C,滿足PA=1,PA⊥面ABC,AC⊥BC,若VP-ABC=23,則該“鞠”的體積的最小值為( ?。?/h1>
V
P
-
ABC
=
2
3
【考點(diǎn)】棱柱、棱錐、棱臺的體積.
【答案】C
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/5/27 14:0:0組卷:246引用:6難度:0.5
相似題
-
1.如圖所示,AB為圓O的直徑,PC⊥平面ABC,Q在線段PA上.
(1)求證:平面BCQ⊥平面ACQ;
(2)若Q為靠近P的一個(gè)三等分點(diǎn),PC=BC=1,,求VP-BCQ的值.AC=22發(fā)布:2025/1/20 8:0:1組卷:36引用:3難度:0.6 -
2.如圖,AB為圓O的直徑,點(diǎn)E、F在圓O上,AB∥EF,矩形ABCD的邊BC垂直于圓O所在的平面,且AB=2,AD=EF=1.
(Ⅰ)設(shè)CD的中點(diǎn)為M,求證:EM∥平面DAF;
(Ⅱ)求三棱錐B-CME的體積.發(fā)布:2025/1/20 8:0:1組卷:16引用:1難度:0.5 -
3.如圖,△ABC內(nèi)接于圓O,AB是圓O的直徑,AB=2,BC=1,設(shè)AE與平面ABC所成的角為θ,且tanθ=
,四邊形DCBE為平行四邊形,DC⊥平面ABC.32
(1)求三棱錐C-ABE的體積;
(2)證明:平面ACD⊥平面ADE;
(3)在CD上是否存在一點(diǎn)M,使得MO∥平面ADE?證明你的結(jié)論.發(fā)布:2025/1/20 8:0:1組卷:95引用:3難度:0.1