設(shè)x1,x2,x3,x4,x5,x6,x7為自然數(shù),且x1<x2<x3<…x6<x7,又x1+x2+x3+x4+x5+x6+x7=159,則x1+x2+x3的最大值是 6161.
【考點】一元一次不等式的應(yīng)用.
【答案】61
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/5/27 14:0:0組卷:970引用:5難度:0.5
相似題
-
1.我市某商場為做好“家電下鄉(xiāng)”的惠民服務(wù),決定從廠家購進甲、乙、丙三種不同型號的電視機108臺,其中甲種電視機的臺數(shù)是丙種的4倍,購進三種電視機的總金額不超過147000元,已知甲、乙、丙三種型號的電視機的出廠價格分別為1000元/臺,1500元/臺,2000元/臺.
(1)求該商場至少購買丙種電視機多少臺?
(2)若要求甲種電視機的臺數(shù)不超過乙種電視的臺數(shù),問有哪些購買方案?發(fā)布:2025/1/21 8:0:1組卷:855引用:24難度:0.1 -
2.我市某商場為做好“家電下鄉(xiāng)”的惠農(nóng)服務(wù),決定從廠家購進甲、乙、丙三種不同型號的電視機108臺,其中甲種電視機的臺數(shù)是丙種的4倍,購進三種電視機的總金額不超過147000元,已知甲、乙、丙三種型號的電視機的出廠價分別為1000元/臺、1500元/臺、2000元/臺.
①求該商場至少購買丙種電視機多少臺?
②若要求甲種電視機的臺數(shù)不超過乙種電視機的臺數(shù),問有哪些購買方案?發(fā)布:2025/1/21 8:0:1組卷:59引用:1難度:0.7 -
3.要使3個連續(xù)奇數(shù)之和不小于100,那么這3個奇數(shù)中,滿足條件的最小奇數(shù)是多少?
發(fā)布:2025/1/15 8:0:2組卷:3引用:0難度:0.6