試卷征集
加入會員
操作視頻

菁優(yōu)網已知雙曲線E:
x
2
a
2
-
y
2
b
2
=1(a>0,b>0)的離心率為2,左、右焦點分別為F1(-c,0),F2(c,0),點A(x1,y1)為雙曲線E右支上異于其頂點的動點,過點A作圓C:x2+y2=a2的一條切線AM,切點為M,且|AM|2+3=
c
2
a
2
x
2
1
-a2
(1)求雙曲線E的標準方程;
(2)設直線AF1與雙曲線左支交于點B,雙曲線的右頂點為D(a,0),直線AD,BD分別與圓C相交,交點分別為異于點D的點P,Q.判斷弦PQ是否過定點,如果過定點,說明理由.

【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/7/26 8:0:9組卷:46引用:2難度:0.4
相似題
  • 1.已知雙曲線C:
    x
    2
    a
    2
    -
    y
    2
    b
    2
    =1(a>0,b>0)的左頂點為A,過左焦點F的直線與C交于P,Q兩點.當PQ⊥x軸時,|PA|=
    10
    ,△PAQ的面積為3.
    (1)求C的方程;
    (2)證明:以PQ為直徑的圓經過定點.

    發(fā)布:2024/12/18 0:0:1組卷:681難度:0.5
  • 菁優(yōu)網2.如圖,在平面直角坐標系xOy中,已知等軸雙曲線E:
    x
    2
    a
    2
    -
    y
    2
    b
    2
    =
    1
    (a>0,b>0)的左頂點A,過右焦點F且垂直于x軸的直線與E交于B,C兩點,若△ABC的面積為
    2
    +
    1

    (1)求雙曲線E的方程;
    (2)若直線l:y=kx-1與雙曲線E的左,右兩支分別交于M,N兩點,與雙曲線E的兩條漸近線分別交于P,Q兩點,求
    |
    MN
    |
    |
    PQ
    |
    的取值范圍.

    發(fā)布:2024/10/31 12:30:1組卷:518引用:10難度:0.5
  • 3.已知雙曲線
    C
    x
    2
    a
    2
    -
    y
    2
    b
    2
    =
    1
    a
    0
    ,
    b
    0
    的左、右焦點分別為F1,F2,過F1的直線與C的兩條漸近線分別交于A,B兩點,若A為線段BF1的中點,且BF1⊥BF2,則C的離心率為( ?。?/h2>

    發(fā)布:2024/11/8 21:0:2組卷:434引用:8難度:0.5
小程序二維碼
把好題分享給你的好友吧~~
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應用名稱:菁優(yōu)網 | 應用版本:5.0.7 |隱私協議|第三方SDK|用戶服務條款
本網部分資源來源于會員上傳,除本網組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網聯系并提供證據,本網將在三個工作日內改正