已知函數(shù)g(x)=4x-n2x是奇函數(shù),f(x)=log4(4x+1)+mx是偶函數(shù)(m,n∈R).
(1)求m+n的值;
(2)設h(x)=f(x)+12x,若g(x)>h[log4(2a+1)]對任意x∈[1,+∞)恒成立,求實數(shù)a的取值范圍.
g
(
x
)
=
4
x
-
n
2
x
f
(
x
)
=
lo
g
4
(
4
x
+
1
)
+
mx
h
(
x
)
=
f
(
x
)
+
1
2
x
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:178引用:7難度:0.3
相似題
-
1.對于任意x1,x2∈(2,+∞),當x1<x2時,恒有
成立,則實數(shù)a的取值范圍是alnx2x1-2(x2-x1)<0發(fā)布:2024/12/29 7:30:2組卷:62引用:3難度:0.6 -
2.把符號
稱為二階行列式,規(guī)定它的運算法則為aamp;bcamp;d.已知函數(shù)aamp;bcamp;d=ad-bc.f(θ)=cosθamp;1-λsinθ2amp;cosθ
(1)若,θ∈R,求f(θ)的值域;λ=12
(2)函數(shù),若對?x∈[-1,1],?θ∈R,都有g(x)-1≥f(θ)恒成立,求實數(shù)λ的取值范圍.g(x)=x2amp;-11amp;1x2+1發(fā)布:2024/12/29 10:30:1組卷:13引用:5難度:0.5 -
3.設函數(shù)f(x)=ex(2x-1)-ax+a,其中a<1,若存在唯一的整數(shù)x0,使得f(x0)<0,則a的取值范圍是.
發(fā)布:2024/12/29 5:0:1組卷:537引用:36難度:0.5