【問題背景】
(1)如圖1,在矩形ABCD中,BC=4,點E是BC上一點,連接AE,DE,若∠AEB+∠CED=90°,則AE2+DE2=1616;
(2)如圖2,在正方形ABCD中,AB=6,點E在邊CD上,將△ADE沿AE翻折至△AFE,連接CF,求△CEF周長的最小值;
【問題解決】
(3)如圖3,某植物園在一個足夠大的空地上擬修建一塊四邊形花圃ABCD,點M是該花圃的一個入口,沿DM和CM分別鋪兩條小路,且∠DMC=135°,AD+BC=am,AM=30m,BM=40m.管理員計劃沿CD邊上種植一條綠化帶(寬度不計),為使美觀,要求綠化帶的長度盡可能的長,那么管理員是否可以種植一條滿足要求的長度最大的綠化帶CD?若可以,求出滿足要求的綠化帶CD的最大長度(用含a的式子表示);若不可以,請說明理由.
【考點】四邊形綜合題.
【答案】16
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/5/8 8:0:8組卷:99引用:1難度:0.1
相似題
-
1.如圖①,矩形ABCD中,AB=12,AD=25,延長CB至E,使BE=9,連接AE,將△ABE沿AB翻折使點E落在BC上的點F處,連接DF.△ABE從點B出發(fā),沿線段BC以每秒3個單位的速度平移得到△A′B′E′,當點E′到達點F時,△ABE又從點F開始沿射線FD方向以每秒5個單位的速度平移,當點E′到達點D時停止運動,設運動的時間為t秒.
(1)線段DF的長度為
(2)在△ABE平移的過程中,記△A′B′E′與△AFD互相重疊部分的面積為S,請直接寫出面積S與運動時
間t之間的函數(shù)關(guān)系式,并寫出自變量t的取值范圍;
(3)如圖②,當點E′到達點F時,△ABE從點F開始沿射線FD方向以每秒5個單位的速度平移時,設A′B′
交射線FD于點M,交線段AD于點N,是否存在某一時刻t,使得△DMN為等腰三角形?若存在,請求出相應的t值;若不存在,請說明理由.
發(fā)布:2025/1/13 8:0:2組卷:119引用:1難度:0.1 -
2.已知:矩形ABCD中,∠MAN的一邊分別與射線DB、射線CB交于點E、M,另一邊分別與射線DB、射線DC交于點F、N,且∠MAN=∠BDA.
(1)若AB=AD,(如圖1)求證:DF=MC.2
(2)(如圖2)若AB=4,AD=8,tan∠BAM=,連接FM并延長交射線AB于點K,求線段BK的長.14發(fā)布:2025/1/13 8:0:2組卷:16引用:0難度:0.9 -
3.已知:如圖1,在梯形ABCD中,AD∥BC,∠BCD=90°,BC=11,CD=6,cot∠ABC=
,點E在AD邊上,且AE=3ED,EF∥AB,EF交BC于點F,點M、N分別在射線FE和線段CD上.12
(1)求線段CF的長;
(2)如圖2,當點M在線段FE上,且AM⊥MN,設FM?cos∠EFC=x,CN=y,求y關(guān)于x的函數(shù)解析式,并寫出它的定義域;
(3)如果△AMN為等腰直角三角形,求線段FM的長.發(fā)布:2025/1/21 8:0:1組卷:95引用:3難度:0.2
相關(guān)試卷