在△ABC中,角A、B、C的對(duì)邊分別為a、b、c,且bcosC=(2a-c)cosB.
(Ⅰ)求角B的大??;
(Ⅱ)求sinA+sinC的取值范圍.
【考點(diǎn)】正弦定理.
【答案】見(jiàn)試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:251引用:2難度:0.6
相似題
-
1.在華羅庚著的《數(shù)學(xué)小叢書(shū)》中,由一個(gè)定理的推導(dǎo)過(guò)程,得出一個(gè)重要的正弦函數(shù)的不等式
≤sinsinα1+sinα2+…+sinαnn,若四邊形ABCD的四個(gè)內(nèi)角為A,B,C,D,則α1+α2+…+αnn的最大值為( ?。?/h2>sinA+sinB+sinC+sinD4發(fā)布:2025/1/5 18:30:5組卷:71引用:1難度:0.7 -
2.如圖,在△ABC中,
,D是BC邊上一點(diǎn),且AB=36,∠B=π4.∠ADB=π3
(1)求AD的長(zhǎng);
(2)若CD=10,求AC的長(zhǎng)及△ACD的面積.發(fā)布:2025/1/24 8:0:2組卷:323引用:7難度:0.5 -
3.在△ABC中,“A<B<C”是“cos2A>cos2B>cos2C”的( ?。?/h2>
發(fā)布:2025/1/5 18:30:5組卷:190引用:11難度:0.7