試卷征集
加入會員
操作視頻

【教材呈現(xiàn)】如圖是華師版八年級上冊數(shù)學教材第96頁的部分內容.
3.角平分線
回憶
我們已經知道角是軸對稱圖形,角平分線所在的直線是角的對稱軸,如圖所示,OC是∠AOB的平分線,P是OC上任一點,作PD⊥OA,PE⊥OB,垂足分別為點D和點E,將∠AOB沿OC對折,我們發(fā)現(xiàn)PD與PE完全重合,由此即有:
角平分線的性質定理角平分線上的點到角兩邊的距離相等.
已知:如圖1所示,OC是∠AOB的平分線,P是OC上任一點,作PD⊥OA,PE⊥OB,垂足分別為點D和點E.
求證:PD=PE.
分析:圖中有兩個直角三角形PDO和PEO,只要證明這兩個三角形全等,便可證得PD=PE.
(1)請根據教材內容,結合圖1,補全定理的證明過程.
(2)【應用】如圖2,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于點E,點F在AC上,BD=DF,若AB=13,AF=8,則CF的長為
5
2
5
2

(3)【拓展】如圖3,在△ABC中,BD平分∠ABC交AC于點D,DE⊥BC于點E.若∠ABC=60°,∠C=45°,DE=3,BD=6,則△ABD的面積為
9
9

菁優(yōu)網

【考點】幾何變換綜合題
【答案】
5
2
;9
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/9/24 12:0:3組卷:211引用:3難度:0.5
相似題
  • 菁優(yōu)網1.如圖,在等邊△ABC中,點D在BC邊上,點E在AC的延長線上,且DE=DA.
    (1)求證:∠BAD=∠EDC;
    (2)點E關于直線BC的對稱點為M,聯(lián)結DM,AM.
    ①根據題意將圖補全;
    ②在點D運動的過程中,DA和AM有什么數(shù)量關系并證明.

    發(fā)布:2024/12/23 14:0:1組卷:255引用:2難度:0.2
  • 菁優(yōu)網2.如圖,點M為矩形ABCD的邊BC上一點,將矩形ABCD沿AM折疊,使點B落在邊CD上的點E處,EB交AM于點F,在EA上取點G,使EG=EC.若GF=6,sin∠GFE=
    4
    5
    ,則AB=

    發(fā)布:2024/12/23 8:0:23組卷:408引用:2難度:0.1
  • 3.閱讀下列材料,完成相應任務.
    【探究三角形中邊與角之間的不等關系】
    學習了等腰三角形,我們知道在一個三角形中,等邊所對的角相等;反過來,等角所對的邊也相等,那么,不相等的邊所對的角之間的大小關系怎樣呢?大邊所對的角也大嗎?下面是奮進小組的證明過程.
    如圖1,在△ABC中,已知AB>AC.求證∠C>∠B.
    菁優(yōu)網
    證明:如圖2,將△ABC折疊,使邊AC落在AB上,點C落在AB上的點C'處,折痕AD交BC于點D.則∠AC'D=∠C.
    ∵∠AC'D=
    +∠BDC'(三角形外角的性質)
    ∴∠AC'D>∠B
    ∴∠C>∠B(等量代換)
    類似地,應用這種方法可以證明“在一個三角形中,大角對大邊,小角對小邊”的問題.
    任務一:將上述證明空白部分補充完整;
    任務二:上述材料中不論是由邊的不等關系,推出角的不等關系,還是由角的不等關系推出邊的不等關系,都是轉化為較大量的一部分與較小量相等的問題,再用三角形外角的性質或三邊關系進而解決,這里主要體現(xiàn)的數(shù)學思想是
    ;(填正確選項的代碼:單選)
    A.轉化思想
    B.方程思想
    C.數(shù)形結合思想
    任務三:根據上述材料得出的結論,判斷下列說法,正確的有
    (將正確的代碼填在橫線處:多選).
    ①在△ABC中,AB>BC,則∠A>∠B;
    ②在△ABC中,AB>BC>AC,∠C=89°,則△ABC是銳角三角形;
    ③Rt△ABC中,∠B=90°,則最長邊是AC;
    ④在△ABC中,∠A=55°,∠B=70°,則AB=BC.

    發(fā)布:2024/11/22 8:0:1組卷:185引用:2難度:0.4
小程序二維碼
把好題分享給你的好友吧~~
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應用名稱:菁優(yōu)網 | 應用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務條款
本網部分資源來源于會員上傳,除本網組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網聯(lián)系并提供證據,本網將在三個工作日內改正