某鎮(zhèn)在政府“精準扶貧”的政策指引下,充分利用自身資源,大力發(fā)展養(yǎng)殖業(yè),以增加收入,政府計劃共投入72萬元,全部用于甲、乙兩個合作社,每個合作社至少要投入15萬元,其中甲合作社養(yǎng)魚,乙合作社養(yǎng)雞,在對市場進行調研分析發(fā)現(xiàn)養(yǎng)魚的收益M、養(yǎng)雞的收益N與投入a(單位:萬元)滿足M=4a+25,15≤a≤36 49,36<a≤57
,N=12a+20.設甲合作社的投入為x(單位:萬元),兩個合作社的總收益為f(x)(單位:萬元).
(1)當甲合作社的投入為25萬元時,求兩個合作社的總收益;
(2)試問如何安排甲、乙兩個合作社的投入,才能使總收益最大?
4 a + 25 , 15 ≤ a ≤ 36 |
49 , 36 < a ≤ 57 |
1
2
【考點】函數(shù)最值的應用.
【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:465引用:12難度:0.6
相似題
-
1.若不等式(a-2)x2+2(a-2)x-4<0對任意實數(shù)x均成立,則實數(shù)a的取值范圍是( ?。?/h2>
發(fā)布:2024/8/5 8:0:8組卷:972引用:20難度:0.7 -
2.求關于x的二次函數(shù)y=x2-2tx+1在-1≤x≤1上的最小值(t為常數(shù))
發(fā)布:2024/8/4 8:0:9組卷:29引用:3難度:0.7 -
3.對于函數(shù)y=f(x)(x∈I),y=g(x)(x∈I),若對于任意x∈I,存在x0,使得f(x)≥f(x0),g(x)≥g(x0)且f(x0)=g(x0),則稱f(x),g(x)為“兄弟函數(shù)”.已知函數(shù)
是定義在區(qū)間f(x)=x2+px+q(p,q∈R),g(x)=x2-x+1x上的“兄弟函數(shù)”,那么函數(shù)f(x)在區(qū)間x∈[12,2]上的最大值為( ?。?/h2>x∈[12,2]發(fā)布:2024/8/28 6:0:10組卷:351引用:15難度:0.7
把好題分享給你的好友吧~~