△ABC的三個內角A,B,C的對邊分別是a,b,c,已知bsinA+B2=csinB.
(1)求C;
(2)若c=1,求a-12b的取值范圍.
bsin
A
+
B
2
=
csin
B
a
-
1
2
b
【考點】正弦定理.
【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:116引用:3難度:0.6
相似題
-
1.在華羅庚著的《數學小叢書》中,由一個定理的推導過程,得出一個重要的正弦函數的不等式
≤sinsinα1+sinα2+…+sinαnn,若四邊形ABCD的四個內角為A,B,C,D,則α1+α2+…+αnn的最大值為( )sinA+sinB+sinC+sinD4發(fā)布:2025/1/5 18:30:5組卷:71引用:1難度:0.7 -
2.在△ABC中,“A<B<C”是“cos2A>cos2B>cos2C”的( ?。?/h2>
發(fā)布:2025/1/5 18:30:5組卷:190引用:11難度:0.7 -
3.已知△ABC的內角A,B,C所對的邊分別為a,b,c,若B=30°,b=1,則
等于( ?。?/h2>a+b+csinA+sinB+sinC發(fā)布:2025/1/3 16:0:5組卷:68引用:4難度:0.8
把好題分享給你的好友吧~~