已知正實數a,b,c滿足a+b+c=3.
(1)求1a+1b+1c的最小值;
(2)求證:b2a2+1+c2b2+1+a2c2+1≥12(ab+bc+ca).
1
a
+
1
b
+
1
c
b
2
a
2
+
1
+
c
2
b
2
+
1
+
a
2
c
2
+
1
≥
1
2
(
ab
+
bc
+
ca
)
【考點】不等式的證明.
【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:39難度:0.4
相似題
-
1.已知關于x的不等式|x+1|-|x-2|≥|t-1|+t有解.
(1)求實數t的取值范圍;
(2)若a,b,c均為正數,m為t的最大值,且2a+b+c=m.求證:.a2+b2+c2≥23發(fā)布:2024/12/29 8:0:12組卷:64引用:9難度:0.5 -
2.若實數x、y、m滿足|x-m|>|y-m|,則稱x比y遠離m.
(1)若x2-1比1遠離0,求x的取值范圍;
(2)對任意正數a,b,證明:(a+b)(a2+b2)(a3+b3)≥8a3b3;
(3)對任意兩個不相等的正數a,b,證明:a3+b3比a2b+ab2遠離.2abab發(fā)布:2024/10/10 0:0:4組卷:20引用:1難度:0.4 -
3.我們知道,
,當且僅當a=b時等號成立.即a,b的算術平均數的平方不大于a,b平方的算術平均數.此結論可以推廣到三元,即(a+b2)2≤a2+b22,當且僅當a=b=c時等號成立.(a+b+c3)2≤a2+b2+c23
(1)證明:,當且僅當a=b=c時等號成立.(a+b+c3)2≤a2+b2+c23
(2)已知x>0,y>0,z>0,若不等式恒成立,利用(1)中的不等式,求實數t的最小值.x+y+z≤tx+y+z發(fā)布:2024/10/12 1:0:1組卷:15難度:0.4
把好題分享給你的好友吧~~