已知不等式f(x)=32sinx4cosx4+6cos2x4-62-m≤0對于任意的-5π6≤x≤π6恒成立,則實數(shù)m的取值范圍是( ?。?/h1>
f
(
x
)
=
3
2
sin
x
4
cos
x
4
+
6
co
s
2
x
4
-
6
2
-
m
≤
0
-
5
π
6
≤
x
≤
π
6
【考點】三角函數(shù)的最值.
【答案】A
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/5/27 14:0:0組卷:103引用:7難度:0.9
相似題
-
1.設(shè)函數(shù)f(x)=
sinxcosx+cos2x+a3
(1)寫出函數(shù)f(x)的最小正周期及單調(diào)遞減區(qū)間;
(2)當(dāng)x∈[,-π6]時,函數(shù)f(x)的最大值與最小值的和為π3,求不等式f(x)>1的解集.32發(fā)布:2024/12/29 12:30:1組卷:431引用:4難度:0.6 -
2.若函數(shù)
(ω>0)在(f(x)=sin(ωx+π6),-π4)有最大值無最小值,則ω的取值范圍是( )π4發(fā)布:2024/12/29 6:0:1組卷:224引用:3難度:0.7 -
3.若函數(shù)
,f(x)=3sinx-cosx,則函數(shù)f(x)值域為( ?。?/h2>x∈[-π2,π2]發(fā)布:2024/12/29 10:0:1組卷:53引用:3難度:0.7
把好題分享給你的好友吧~~