用數(shù)學(xué)歸納法證明f(n)=1n+1+1n+2+…13n+1>2524(n∈N+)過程中,設(shè)計(jì)n=k(k∈N+)時(shí),不等式f(k)>2524成立,則需證當(dāng)n=k+1時(shí),f(k+1)>2524也成立,則f(k+1)-f(k)=( ?。?/h1>
f
(
n
)
=
1
n
+
1
+
1
n
+
2
+
…
1
3
n
+
1
>
25
24
f
(
k
)
>
25
24
f
(
k
+
1
)
>
25
24
【考點(diǎn)】數(shù)學(xué)歸納法.
【答案】C
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:171引用:3難度:0.7
相似題
-
1.用數(shù)學(xué)歸納法證明
+1n+1+…+1n+2≥13n,從n=k到n=k+1,不等式左邊需添加的項(xiàng)是( )56發(fā)布:2024/12/17 12:30:2組卷:387引用:10難度:0.9 -
2.已知n為正整數(shù),請(qǐng)用數(shù)學(xué)歸納法證明:1+
+12+……+131n.<2n發(fā)布:2024/10/27 17:0:2組卷:423引用:1難度:0.7 -
3.已知數(shù)列{an}的前n項(xiàng)和為Sn,且3Sn=4an-4n+1-4(n∈N*),令
.bn=an4n
(Ⅰ)求證:數(shù)列{bn}是等差數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若f(n)=an-2(n∈N*),用數(shù)學(xué)歸納法證明f(n)是18的倍數(shù).發(fā)布:2024/10/27 17:0:2組卷:36引用:2難度:0.3
把好題分享給你的好友吧~~