下面是某數(shù)學(xué)興趣小組探究用不同方法作一條線段的垂直平分線的討論片段,請仔細(xì)閱讀,并完成相應(yīng)任務(wù).
小晃:如圖1,(1)分別以A,B為圓心,大于 1 2 簡述作圖理由: 由作圖可知,PA=PB,所以點P在線段AB的垂直平分線上,∠PAB=∠PBA,因為AD,BC分別是∠PAB,∠PBA的平分線,所以∠DAB=∠CBA,所以AE=BE,所以點E在線段AB的垂直平分線上,所以PE是線段AB的垂直平分線. 小航:我認(rèn)為小晃的作圖方法很有創(chuàng)意,但是可以改進(jìn)如下,如圖2,(1)分別以A,B為圓心,大于 1 2 … |
任務(wù):
(1)小晃得出點P在線段AB的垂直平分線上的依據(jù)是
到線段兩端點距離相等的點在這條線段的垂直平分線上
到線段兩端點距離相等的點在這條線段的垂直平分線上
;(2)小航作圖得到的直線PE是線段AB的垂直平分線嗎?請判斷并說明理由;
(3)如圖3,已知∠P=30°,PA=PB,AB=
6
【考點】三角形綜合題.
【答案】到線段兩端點距離相等的點在這條線段的垂直平分線上
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:467引用:6難度:0.3
相似題
-
1.已知直角△ABC,∠BAC=90°,D是斜邊BC的中點,E、F分別是AB、AC邊上的點,且DE⊥DF,連接EF.
(1)如圖1,求證:∠BED=∠AFD;
(2)如圖1,求證:BE2+CF2=EF2;
(3)如圖2,當(dāng)∠ABC=45°,若BE=4,CF=3,求△DEF的面積.發(fā)布:2024/12/23 14:0:1組卷:181引用:3難度:0.2 -
2.一副三角板如圖1擺放,∠C=∠DFE=90°,∠B=30°,∠E=45°,點F在BC上,點A在DF上,且AF平分∠CAB,現(xiàn)將三角板DFE繞點F順時針旋轉(zhuǎn)(當(dāng)點D落在射線FB上時停止旋轉(zhuǎn)).
(1)當(dāng)∠AFD=°時,DF∥AC;當(dāng)∠AFD=°時,DF⊥AB;
(2)在旋轉(zhuǎn)過程中,DF與AB的交點記為P,如圖2,若△AFP有兩個內(nèi)角相等,求∠APD的度數(shù);
(3)當(dāng)邊DE與邊AB、BC分別交于點M、N時,如圖3,若∠AFM=2∠BMN,比較∠FMN與∠FNM的大小,并說明理由.發(fā)布:2024/12/23 18:30:1組卷:1658引用:10難度:0.1 -
3.已知A(0,4),B(-4,0),D(9,4),C(12,0),動點P從點A出發(fā),在線段AD上,以每秒1個單位的速度向點D運動:動點Q從點C出發(fā),在線段BC上,以每秒2個單位的速度向點B運動,點P、Q同時出發(fā),當(dāng)其中一個點到達(dá)終點時,另一個點隨之停止運動,設(shè)運動時間為t(秒).
(1)當(dāng)t=秒時,PQ平分線段BD;
(2)當(dāng)t=秒時,PQ⊥x軸;
(3)當(dāng)時,求t的值.∠PQC=12∠D發(fā)布:2024/12/23 15:0:1組卷:140引用:3難度:0.1
把好題分享給你的好友吧~~