等面積法是一種常用的、重要的數(shù)學(xué)解題方法.它是利用“同一個(gè)圖形的面積相等”、“分割圖形后各部分的面積之和等于原圖形的面積”、“同底等高或等底同高的兩個(gè)三角形面積相等”等性質(zhì)解決有關(guān)數(shù)學(xué)問題.在解題中,靈活運(yùn)用等面積法解決相關(guān)問題,可以使解題思路清晰,解題過程簡(jiǎn)便快捷.
請(qǐng)用等面積法的思想解決下列問題:
(1)在直角三角形中,兩直角邊長分別為3和4,則該直角三角形斜邊上的高的長為 125125;
?(2)如圖1,反比例函數(shù)y=-6x(x>0)的圖象上有一點(diǎn)P,PA⊥x軸于點(diǎn)A,點(diǎn)B在y軸上,則△PAB的面積為 33.
(3)如圖2,P是邊長為a的正△ABC 內(nèi)任意一點(diǎn),點(diǎn)O為△ABC的中心,設(shè)點(diǎn)P到△ABC各邊距離分別為h1,h2,h3,連接AP,BP,CP,由等面積法,易知12a(h1+h2+h3)=S△ABC=3S△OAB,可得h1+h2+h3=32a;如圖3,若P是邊長為4的正五邊形ABCDE內(nèi)任意一點(diǎn),設(shè)點(diǎn)P到五邊形ABCDE各邊距離分別為h1,h2,h3,h4,h5,參照上面的探索過程,求h1+h2+h3+h4+h5的值.(參考數(shù)據(jù):tan36°≈23,tan54°≈32)
(4)如圖4,已知⊙O的半徑為1,點(diǎn)A為⊙O外一點(diǎn),OA=2,AB切⊙O于點(diǎn)B,弦BC∥OA,連接AC,求圖中陰影部分的面積.(結(jié)果保留π)
(5)我國數(shù)學(xué)家祖暅,提出了一個(gè)祖暅原理:“冪勢(shì)既同,則積不容異”.意思是:兩個(gè)等高的幾何體若在所有等高處的水平截面的面積相等,則這兩個(gè)幾何體體積相等.如圖所示,某帳篷的造型是兩個(gè)全等圓柱垂直相交的公共部分的一半(這個(gè)公共部分叫做牟合方蓋),其中曲線AOC和BOD均是以1為半徑的半圓.用任意平行于帳篷底面ABCD的平面截帳篷,所得截面四邊形均為正方形,且該正方形的面積恰好等于與帳篷同底等高的正四棱柱中挖去一個(gè)倒放的同底等高的正四棱錐后同高度截面的面積(圖8中陰影部分的面積),因此該帳篷的體積為 2323.(正棱錐的體積V=13底面積×高)
?
12
5
12
5
6
x
1
2
a
(
h
1
+
h
2
+
h
3
)
=
S
△
ABC
=
3
S
△
OAB
3
2
2
3
3
2
2
3
2
3
1
3
【考點(diǎn)】三角形綜合題.
【答案】;3;
12
5
2
3
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/7/14 8:0:9組卷:112引用:1難度:0.5
相似題
-
1.已知直角△ABC,∠BAC=90°,D是斜邊BC的中點(diǎn),E、F分別是AB、AC邊上的點(diǎn),且DE⊥DF,連接EF.
(1)如圖1,求證:∠BED=∠AFD;
(2)如圖1,求證:BE2+CF2=EF2;
(3)如圖2,當(dāng)∠ABC=45°,若BE=4,CF=3,求△DEF的面積.發(fā)布:2024/12/23 14:0:1組卷:184引用:3難度:0.2 -
2.一副三角板如圖1擺放,∠C=∠DFE=90°,∠B=30°,∠E=45°,點(diǎn)F在BC上,點(diǎn)A在DF上,且AF平分∠CAB,現(xiàn)將三角板DFE繞點(diǎn)F順時(shí)針旋轉(zhuǎn)(當(dāng)點(diǎn)D落在射線FB上時(shí)停止旋轉(zhuǎn)).
(1)當(dāng)∠AFD=°時(shí),DF∥AC;當(dāng)∠AFD=°時(shí),DF⊥AB;
(2)在旋轉(zhuǎn)過程中,DF與AB的交點(diǎn)記為P,如圖2,若△AFP有兩個(gè)內(nèi)角相等,求∠APD的度數(shù);
(3)當(dāng)邊DE與邊AB、BC分別交于點(diǎn)M、N時(shí),如圖3,若∠AFM=2∠BMN,比較∠FMN與∠FNM的大小,并說明理由.發(fā)布:2024/12/23 18:30:1組卷:1692引用:10難度:0.1 -
3.已知A(0,4),B(-4,0),D(9,4),C(12,0),動(dòng)點(diǎn)P從點(diǎn)A出發(fā),在線段AD上,以每秒1個(gè)單位的速度向點(diǎn)D運(yùn)動(dòng):動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),在線段BC上,以每秒2個(gè)單位的速度向點(diǎn)B運(yùn)動(dòng),點(diǎn)P、Q同時(shí)出發(fā),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(秒).
(1)當(dāng)t=秒時(shí),PQ平分線段BD;
(2)當(dāng)t=秒時(shí),PQ⊥x軸;
(3)當(dāng)時(shí),求t的值.∠PQC=12∠D發(fā)布:2024/12/23 15:0:1組卷:143引用:3難度:0.1