設(shè)函數(shù)f(x)=ax-a-x(a>0,a≠1).
(1)若f(12)=a12+a-12=3,求a2+a-2的值.
(2)若f(1)=32,求函數(shù)f(x)的解析式;
(3)在(2)的條件下,設(shè)g(x)=a2x+a-2x-2mf(x),g(x)在[1,+∞)上的最小值為-1,求m.
1
2
a
1
2
+
a
-
1
2
3
2
【考點(diǎn)】函數(shù)解析式的求解及常用方法;有理數(shù)指數(shù)冪及根式.
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:28引用:1難度:0.6
相似題
-
1.已知函數(shù)f(x)的圖象如圖所示,則該函數(shù)的解析式為( ?。?img alt src="https://img.jyeoo.net/quiz/images/svg/202211/450/71f5ec8e.png" style="vertical-align:middle;FLOAT:none;" />
發(fā)布:2024/12/2 8:0:27組卷:99引用:5難度:0.7 -
2.已知f(x+1)=2x+1,則f(2)=( ?。?/h2>
發(fā)布:2024/12/21 4:30:3組卷:50引用:2難度:0.8 -
3.為了預(yù)防流感,某學(xué)校對(duì)教室用藥熏消毒法進(jìn)行消毒,已知藥物釋放過程中,室內(nèi)每立方米空氣中含藥量y(毫克)與時(shí)間t(小時(shí))成正比.已知6分鐘后藥物釋放完畢,藥物釋放完畢后,y與t的函數(shù)關(guān)系是為y=(
)116,如圖所示,根據(jù)圖中提供的信息,回答下列問題:t-110
(1)求從藥物釋放開始,每立方米空氣中的含藥量y(毫克)與時(shí)間t(小時(shí))之間的函數(shù)關(guān)系式;
(2)據(jù)測(cè)定,當(dāng)空氣中每立方米的含藥量降低到0.125毫克以下時(shí),學(xué)生方可進(jìn)教室,那么從藥物釋放開始,至少需要經(jīng)過多少分鐘后,學(xué)生才能回到教室?發(fā)布:2024/12/3 8:0:1組卷:51引用:1難度:0.5