17世紀(jì)荷蘭數(shù)學(xué)家舒騰設(shè)計了多種圓錐曲線規(guī),其中的一種如圖1所示.四根等長的桿用鉸鏈?zhǔn)孜叉溄?,?gòu)成菱形LF2KQ.帶槽桿QF1長為22,點F1,F(xiàn)2間的距離為2,轉(zhuǎn)動桿QF1一周的過程中始終有|QE|=|EF2|.點M在線段F1F2的延長線上,且|MF2|=1.
(1)建立如圖2所示的平面直角坐標(biāo)系,求出點E的軌跡Γ的方程;
(2)過點F2的直線l1與Γ交于A,B兩點.記直線MA,MB的斜率為k1,k2,證明:k1+k2為定值;
(3)過點M作直線l2垂直于直線F1F2,在l2上任取一點N,對于(2)中的A,B兩點,試證明:直線NA,NF2,NB的斜率成等差數(shù)列.
2
2
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:207引用:3難度:0.1
相似題
-
1.點P在以F1,F(xiàn)2為焦點的雙曲線
(a>0,b>0)上,已知PF1⊥PF2,|PF1|=2|PF2|,O為坐標(biāo)原點.E:x2a2-y2b2=1
(Ⅰ)求雙曲線的離心率e;
(Ⅱ)過點P作直線分別與雙曲線漸近線相交于P1,P2兩點,且,OP1?OP2=-274,求雙曲線E的方程;2PP1+PP2=0
(Ⅲ)若過點Q(m,0)(m為非零常數(shù))的直線l與(2)中雙曲線E相交于不同于雙曲線頂點的兩點M、N,且(λ為非零常數(shù)),問在x軸上是否存在定點G,使MQ=λQN?若存在,求出所有這種定點G的坐標(biāo);若不存在,請說明理由.F1F2⊥(GM-λGN)發(fā)布:2024/12/29 10:0:1組卷:64引用:5難度:0.7 -
2.已知兩個定點坐標(biāo)分別是F1(-3,0),F(xiàn)2(3,0),曲線C上一點任意一點到兩定點的距離之差的絕對值等于2
.5
(1)求曲線C的方程;
(2)過F1(-3,0)引一條傾斜角為45°的直線與曲線C相交于A、B兩點,求△ABF2的面積.發(fā)布:2024/12/29 10:30:1組卷:82引用:1難度:0.9 -
3.若過點(0,-1)的直線l與拋物線y2=2x有且只有一個交點,則這樣的直線有( ?。l.
A.1 B.2 C.3 D.4 發(fā)布:2024/12/29 10:30:1組卷:25引用:5難度:0.7
把好題分享給你的好友吧~~