向量a=(2,2),向量b與向量a的夾角為3π4,且a?b=-2,
(1)求向量b;
(2)若t=(1,0),且b⊥t,c=(cosA,2cos2C2),其中A,B,C是△ABC的內(nèi)角,且B=π3,試求|b+c|的取值范圍.
a
b
a
3
π
4
a
b
b
t
b
t
c
2
co
s
2
C
2
B
=
π
3
b
c
【考點(diǎn)】平面向量數(shù)量積的性質(zhì)及其運(yùn)算.
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:78引用:2難度:0.6
相似題
-
1.在矩形ABCD中,AB=6,AD=3.若點(diǎn)M是CD的中點(diǎn),點(diǎn)N是BC的三等分點(diǎn),且
,則BN=13BC=( ?。?/h2>AM?MN發(fā)布:2025/1/2 23:30:3組卷:82引用:2難度:0.8 -
2.若向量
=(1,2),AB=(3,-4),則CB?AB=( ?。?/h2>AC發(fā)布:2025/1/5 18:30:5組卷:190引用:3難度:0.8 -
3.已知圓O的半徑為1,A,B是圓O上的兩個(gè)動(dòng)點(diǎn),|
-OA|=2OB?OA,則OB,OA的夾角為( ?。?/h2>OB發(fā)布:2024/12/29 20:30:4組卷:86引用:4難度:0.6
把好題分享給你的好友吧~~