在平面直角坐標(biāo)系中,
函數(shù)y=-12x2+12x+m(x<m) x2-mx+m(x≥m)
的圖象記為G.
(1)當(dāng)m=2時,
①已知M(3,n)在該函數(shù)圖象上,求n的值.
②當(dāng)0≤x≤2時,圖象G上到x軸的距離為2個單位長度的點(diǎn)的坐標(biāo)為 (0,2)或(1,2)或(2,2)(0,2)或(1,2)或(2,2).
(2)當(dāng)m>0時,設(shè)直線x=12m與x軸交于點(diǎn)P,與圖象G交于點(diǎn)Q,若∠POQ=45°時,求m的值.
(3)當(dāng)m≤3時,設(shè)圖象G與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,過點(diǎn)B作BC⊥BA交直線x=m于點(diǎn)C.設(shè)點(diǎn)A的橫坐標(biāo)為a,點(diǎn)C的縱坐標(biāo)為c,若a=-3c,直接寫出m的值.
- 1 2 x 2 + 1 2 x + m ( x < m ) |
x 2 - mx + m ( x ≥ m ) |
1
2
【考點(diǎn)】二次函數(shù)綜合題.
【答案】(0,2)或(1,2)或(2,2)
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:81引用:1難度:0.3
相似題
-
1.如圖,已知拋物線y=ax2+bx-2與x軸的兩個交點(diǎn)是A(4,0),B(1,0),與y軸的交點(diǎn)是C.
(1)求該拋物線的解析式;
(2)在直線AC上方的該拋物線上是否存在一點(diǎn)D,使得△DCA的面積最大?若存在,求出點(diǎn)D的坐標(biāo)及△DCA面積的最大值;若不存在,請說明理由;
(3)設(shè)拋物線的頂點(diǎn)是F,對稱軸與AC的交點(diǎn)是N,P是在AC上方的該拋物線上一動點(diǎn),過P作PM⊥x軸,交AC于M.若P點(diǎn)的橫坐標(biāo)是m.問:
①m取何值時,過點(diǎn)P、M、N、F的平面圖形不是梯形?
②四邊形PMNF是否有可能是等腰梯形?若有可能,請求出此時m的值;若不可能,請說明理由.發(fā)布:2025/1/2 8:0:1組卷:82引用:1難度:0.5 -
2.如圖,我們把一個半圓與拋物線的一部分圍成的封閉圖形稱為“果圓”.已知點(diǎn)A、B、C、D分別是“果圓”與坐標(biāo)軸的交點(diǎn),拋物線的解析式為y=x2-2x-3,AB為半圓的直徑,則這個“果圓”被y軸截得的弦CD的長為.
發(fā)布:2024/12/23 17:30:9組卷:3641引用:37難度:0.4 -
3.如圖,將矩形OABC置于平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(0,4),點(diǎn)C在x軸上,點(diǎn)D(3
,1)在BC上,將矩形OABC沿AD折疊壓平,使點(diǎn)B落在坐標(biāo)平面內(nèi),設(shè)點(diǎn)B的對應(yīng)點(diǎn)為點(diǎn)E.若拋物線y=ax2-45ax+10(a≠0且a為常數(shù))的頂點(diǎn)落在△ADE的內(nèi)部,則a的取值范圍是( ?。?/h2>5發(fā)布:2024/12/26 1:30:3組卷:2665引用:7難度:0.7