我們知道,函數(shù)y=f(x)圖象關于坐標原點成中心對稱圖形的充要條件是函數(shù)y=f(x)為奇函數(shù),有同學發(fā)現(xiàn)可以將其推廣為:函數(shù)y=f(x)的圖象關于點P(m,n)成中心對稱圖形的充要條件是函數(shù)y=f(x+m)-n為奇函數(shù).已知函數(shù)f(x)=44x+2.
(1)利用上述結(jié)論,證明:函數(shù)f(x)的圖象關于(12,1)成中心對稱圖形;
(2)判斷函數(shù)f(x)的單調(diào)性(無需證明),并解關于x的不等式:f(x2+ax+a+1)+f(x)<2.
f
(
x
)
=
4
4
x
+
2
(
1
2
,
1
)
【考點】函數(shù)的奇偶性.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:127引用:5難度:0.5
相似題
-
1.已知f(x)是定義在R上的奇函數(shù),f(x)的圖象關于x=1對稱,當x∈(0,1]時,f(x)=ex-1,則下列判斷正確的是( ?。?/h2>
發(fā)布:2024/12/29 2:0:1組卷:266引用:5難度:0.5 -
2.設函數(shù)
為奇函數(shù),則實數(shù)a的值為( ?。?/h2>f(x)=(x+1)(x+a)x發(fā)布:2024/12/29 13:0:1組卷:804引用:4難度:0.5 -
3.定義在R上的奇函數(shù)f(x)滿足f(x-2)=-f(x),則f(2022)=( ?。?/h2>
發(fā)布:2025/1/4 5:0:3組卷:180引用:1難度:0.7