設函數(shù)f(x)=alnx-(x-1)ex,其中a∈R.
(1)若a=e,求f(x)的最大值;
(2)若f(x)存在兩個零點x1,x2,
(i)求a的取值范圍;
(ii)設x0為f(x)的極值點,試探究是否存在實數(shù)a>e,使得x1,x0,x2成等差數(shù)列,若存在,求出a的值,若不存在,請說明理由.
【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/10/2 5:0:2組卷:15引用:2難度:0.5
相似題
-
1.設f(x)=(x+1)ln(x+1),g(x)=ax2+x(a∈R).
(1)求f(x)的最小值;
(2)若?x≥0,f(x)≤g(x),求實數(shù)a的取值范圍.發(fā)布:2024/10/16 18:0:2組卷:97引用:5難度:0.3 -
2.已知兩數(shù)f(x)=2|sinx|+cosx,則f(x)的最小值為( ?。?/h2>
發(fā)布:2024/11/8 0:0:1組卷:134引用:3難度:0.6 -
3.已知函數(shù)f(x)=2ex-sin2x.
(1)當x≥0時,求函數(shù)f(x)的最小值;
(2)若對于,不等式4xex+xcos2x-ax2-5x≥0恒成立,求實數(shù)a的取值范圍.?x∈(-π12,+∞)發(fā)布:2024/10/11 15:0:1組卷:38引用:2難度:0.5