問題提出:
把A,B,C,D,E五個不同的棋子放在如圖所示的5×5方格紙內(nèi),使每行每列只能出現(xiàn)一個棋子,共有多少種不同的放法?
問題探究:
為了解決上面的問題,我們先從最簡單的情形入手,從中找到解決問題的方法.
探究一:
若把A,B兩個不同的棋子放在2×2方格紙內(nèi),并使每行每列只能出現(xiàn)一個棋子,可看成分兩步完成這件事情.第一步放棋子A,棋子A可以放在4個方格的任意一個中,故棋子A有4種不同的放法.第二步放棋子B,由于棋子A已放定,那么放棋子A的那一行和那一列中的其他方格內(nèi)也不能放棋子B,故還剩下1個方格可以放棋子B,棋子B只有1種放法.如:棋子A放在方格1中,那么方格2和方格3也不能放棋子B,棋子B只能放在方格4中.由于第一步有4種放法,第二步有1種放法,所以共有4×1種不同放法.
探究二:
若把A,B,C三個不同的棋子放在3×3方格紙內(nèi),并使每行每列只能出現(xiàn)一個棋子,可看成分三步完成這件事情.第一步放棋子A,棋子A可以放在9個方格的任意一個中,故棋子A有9種不同的放法.第二步放棋子B,由于棋子A已放定,那么放棋子A的那一行和那一列中的其他方格內(nèi)也不能放棋子B,此時只剩四個方格可以放棋子B,且四個方格的位置可類似看作“2×2方格”模型,所以接下來放棋子B和棋子C的兩步有4×1種不同的放法.由于第一步有9種放法,第二步和第三步有4×1種放法,所以共有9×4×1種不同的放法.
探究三:
若把A,B,C,D四個不同的棋子放在4×4方格紙內(nèi),可看成分四步完成這件事情.第一步放棋子A,棋子A可以放在 1616個方格的任意一個中,故棋子A有 1616種不同的放法.第二步放棋子B,由于棋子A已放定,那么放棋子A的那一行和那一列中的其他方格內(nèi)也不能放棋子B,此時只有 99個方格可以放棋子B,且這些方格的位置可類似看作“3×33×3方格”模型,所以接下來放棋子B,棋子C和棋子D的三步有 9×4×19×4×1種不同的放法.所以共有 16×9×4×116×9×4×1種不同的放法.
問題解決:
把A,B,C,D,E五個不同的棋子放在5×5方格紙內(nèi),并使每行每列只能出現(xiàn)一個棋子,共有 25×16×9×4×125×16×9×4×1種不同的放法.
拓展延伸:
若安排甲,乙,丙,丁,戊五人分別坐在五個不同的位置上,五個人要坐網(wǎng)格類的座位,共有 1440014400種不同的坐法.
【考點】排列與組合問題.
【答案】16;16;9;3×3;9×4×1;16×9×4×1;25×16×9×4×1;14400
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:155引用:1難度:0.4
相似題
-
1.停車站劃出一排12個停車位置,今有8輛不同的車需要停放,若要求剩余的4個空車位連在一起,一共有 種不同的停車方案.
發(fā)布:2024/7/23 8:0:8組卷:33引用:1難度:0.5 -
2.(1)由1、2、3、4四個數(shù)字組成的四位數(shù)共有幾個?
(2)4名同學(xué)排成一排,有多少種排法?發(fā)布:2024/8/6 8:0:9組卷:14引用:0難度:0.9 -
3.要把一張面值為100元的人民幣換成零錢,現(xiàn)有足夠的面值為20元、10元的人民幣,則不同的換法一共有( ?。?/h2>
A.5種 B.6種 C.8種 D.10種 發(fā)布:2024/7/27 8:0:9組卷:55引用:1難度:0.5
把好題分享給你的好友吧~~