在復平面內,O是原點,OA,OB對應的復數(shù)分別為2+icos(2x+π3),(2+3sin2x)+i[2+cos(2x+π3)],i為虛數(shù)單位.設函數(shù)f(x)=OA?AB.
(1)求函數(shù)f(x)的單調遞增區(qū)間;
(2)若函數(shù)y=f(x)-m在區(qū)間[0,π2]上有2個零點,求實數(shù)m的取值范圍.
OA
,
OB
2
+
icos
(
2
x
+
π
3
)
(
2
+
3
sin
2
x
)
+
i
[
2
+
cos
(
2
x
+
π
3
)
]
f
(
x
)
=
OA
?
AB
[
0
,
π
2
]
【考點】平面向量數(shù)量積的性質及其運算.
【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:121引用:5難度:0.6