【閱讀理解】題目:若(10-x)(x-5)=2,求(10-x)2+(x-5)2的值.
由觀察,得(10-x)與(x-5)中的x與-x互為相反數(shù).
所以我們不妨設(shè)a=10-x,b=x-5.
∵(10-x)(x-5)=2,
∴ab=2.
∵(10-x)+(x-5)=5,
∴a+b=(10-x)+(x-5)=5.
∴(10-x)2+(x-5)2=a2+b2
=(a+b)2-2ab
=52-2×2
=21.
我們把這種方法叫做換元法,利用換元法達(dá)到簡(jiǎn)化計(jì)算的目的,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想.
【理解應(yīng)用】(1)若(8-x)(x-3)=3,則(8-x)2+(x-3)2=1919.
(2)若x滿(mǎn)足(2023-x)2+(x-2019)2=10,求(2023-x)(x-2019)的值.
【拓展】如圖,在△ABC中,∠ABC=90°,BC=12,點(diǎn)D是邊BC上的點(diǎn),在邊AB上取一點(diǎn)E,使AE=CD,設(shè)AE=x(x>0).分別以AB、BD為邊在△ABC外部作正方形ABFG和正方形BDMN,連結(jié)AD.若BE=4,△ABD的面積為10,直接寫(xiě)出正方形ABFG和正方形BDMN的面積和.
【考點(diǎn)】整式的混合運(yùn)算—化簡(jiǎn)求值;完全平方公式的幾何背景.
【答案】19
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/10/23 18:0:1組卷:169引用:1難度:0.7
把好題分享給你的好友吧~~