數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=n(n+1)(n∈N*).
(1)若數(shù)列{bn}滿足:an=b13+1+b232+1+b333+1+……+bn3n+1,求數(shù)列{bn}的通項(xiàng)公式;
(2)令kn=anbn4(n∈N*),求數(shù)列{kn}的前n項(xiàng)和Tn.
(3)cn=(bn2-1)+(-1)n-1λ?2an2,(n為正整數(shù)),問(wèn)是否存在非零整數(shù)λ,使得對(duì)任意正整數(shù)n,都有cn+1>cn?若存在,求λ的值,若不存在,說(shuō)明理由.
b
1
3
+
1
b
2
3
2
+
1
b
3
3
3
+
1
b
n
3
n
+
1
a
n
b
n
4
c
n
=
(
b
n
2
-
1
)
+
(
-
1
)
n
-
1
λ
?
2
a
n
2
【考點(diǎn)】錯(cuò)位相減法.
【答案】見(jiàn)試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:142引用:1難度:0.5
相似題
-
1.已知數(shù)列{an}、{bn}滿足
,若數(shù)列{an}是等比數(shù)列且a1=3,b4=4+b3.a1a2a3?an=3bn
(1)求數(shù)列{an}、{bn}的通項(xiàng)公式;
(2)令cn=,求{cn}的前n項(xiàng)和為Sn.2bn(n+1)an發(fā)布:2024/12/6 20:30:1組卷:181引用:3難度:0.6 -
2.已知數(shù)列{an}中,a1=1,且an+1=2an+2n(n∈N*).
(1)求證:數(shù)列{}是等差數(shù)列,并求出an;an2n
(2)數(shù)列{an}前n項(xiàng)和為Sn,求Sn.發(fā)布:2024/12/7 22:0:2組卷:443引用:3難度:0.7 -
3.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且S8=100,a2=5,設(shè)數(shù)列{bn}的前n項(xiàng)和為Pn=2n+1-2.
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)設(shè)cn=anbn,數(shù)列{cn}的前n項(xiàng)和為Tn.發(fā)布:2024/12/7 19:0:1組卷:59引用:2難度:0.6
把好題分享給你的好友吧~~