在平面直角坐標(biāo)系xOy中,已知直線l:x+y=1與曲線C:x=21+t2, y=2t1+t2
(t為參數(shù)).以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.
(Ⅰ)求曲線C的普通方程;
(Ⅱ)在極坐標(biāo)系中,射線m:θ=α(0<α<3π8)與直線l和曲線C分別交于點(diǎn)A,B,若|OA|=(3-1)|OB|,求α的值.
C
:
x = 2 1 + t 2 , |
y = 2 t 1 + t 2 |
m
:
θ
=
α
(
0
<
α
<
3
π
8
)
|
OA
|
=
(
3
-
1
)
|
OB
|
【考點(diǎn)】參數(shù)方程化成普通方程.
【答案】見(jiàn)試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:195引用:4難度:0.6
相似題
-
1.在平面直角坐標(biāo)系xOy中,已知曲線C1:
(t為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C2:ρ=2acosθ(a>0).x=t,y=2t2-t+32
(1)求曲線C1的極坐標(biāo)方程和曲線C2的直角坐標(biāo)方程;
(2)設(shè)射線與C1相交于A,B兩點(diǎn),與C2相交于M點(diǎn)(異于O),若|OM|=|AB|,求a.θ=π3(ρ≥0)發(fā)布:2024/12/29 6:30:1組卷:153引用:8難度:0.7 -
2.已知三個(gè)方程:①
②x=ty=t2③x=tanty=tan2t(都是以t為參數(shù)).那么表示同一曲線的方程是( ?。?/h2>x=sinty=sin2t發(fā)布:2025/1/7 22:30:4組卷:105引用:2難度:0.7 -
3.直線l:
(t為參數(shù),a≠0),圓C:x=a-2t,y=-1+t(極軸與x軸的非負(fù)半軸重合,且單位長(zhǎng)度相同).ρ=22cos(θ+π4)
(1)求圓心C到直線l的距離;
(2)若直線l被圓C截得的弦長(zhǎng)為,求a的值.655發(fā)布:2024/12/29 10:0:1組卷:56引用:6難度:0.5