已知數(shù)列{an}滿足a1=-32,an+1=3an2-2an(n∈N*).
(1)證明:{1an+2}是等比數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}滿足bn=(n-3)(12an+1),記{bn}的前n項(xiàng)和為Tn,若Tn≤tbn對(duì)?n∈N*恒成立,求實(shí)數(shù)t的取值范圍.
a
1
=
-
3
2
,
a
n
+
1
=
3
a
n
2
-
2
a
n
(
n
∈
N
*
)
{
1
a
n
+
2
}
b
n
=
(
n
-
3
)
(
1
2
a
n
+
1
)
【考點(diǎn)】錯(cuò)位相減法.
【答案】見(jiàn)試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:141引用:3難度:0.4
相似題
-
1.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且S5=
S2,a2n=2an+1,n∈N*.254
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=2n-1+1,令cn=an?bn,求數(shù)列{cn}的前n項(xiàng)和Tn.發(fā)布:2024/12/29 6:0:1組卷:215引用:3難度:0.4 -
2.已知數(shù)列{an}滿足a1=2,an+1=3an+2(n∈N*).
(1)求證:數(shù)列{an+1}是等比數(shù)列;
(2)設(shè)bn=(3n-2)?an,求數(shù)列{bn}的前n項(xiàng)和Sn.發(fā)布:2024/12/29 0:30:2組卷:429引用:4難度:0.6 -
3.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且S4=4S2,a2n=2an+1(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若,令cn=anbn,求數(shù)列{cn}的前n項(xiàng)和Tn.bn=3n-1發(fā)布:2024/12/29 5:30:3組卷:425引用:12難度:0.6
把好題分享給你的好友吧~~