已知橢圓E:x2a2+y2b2=1(a>b>0)的左、右焦點分別為F1,F(xiàn)2,離心率e=22,P為橢圓上一動點,△PF1F2面積的最大值為2.
(1)求橢圓E的方程;
(2)若C,D分別是橢圓E長軸的左、右端點,動點M滿足MD⊥CD,連結(jié)CM交橢圓于點N,O為坐標(biāo)原點.證明:OM?ON為定值;
(3)平面內(nèi)到兩定點距離之比是常數(shù)λ(λ≠1)的點的軌跡是圓.橢圓E的短軸上端點為A,點Q在圓x2+y2=8上,求2|QA|+|QP|-|PF2|的最小值.
E
:
x
2
a
2
+
y
2
b
2
=
1
(
a
>
b
>
0
)
e
=
2
2
OM
?
ON
【考點】橢圓相關(guān)動點軌跡.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/7/20 8:0:8組卷:269引用:4難度:0.4
相似題
-
1.已知橢圓
的兩焦點為F1,F(xiàn)2,x軸上方兩點A,B在橢圓上,AF1與BF2平行,AF2交BF1于P.過P且傾斜角為α(α≠0)的直線從上到下依次交橢圓于S,T.若|PS|=β|PT|,則“α為定值”是“β為定值”的( )x2a2+y2b2=1(a>b>0)發(fā)布:2024/8/3 8:0:9組卷:53引用:1難度:0.4 -
2.已知P是橢圓
+x236=1上的動點,過點P作PD⊥x軸,D為垂足,點M滿足y29=MD,求點M的軌跡方程.13PD發(fā)布:2024/8/2 8:0:9組卷:11引用:0難度:0.6 -
3.已知F是橢圓
的左焦點,O為坐標(biāo)原點,M為橢圓上任意一點,橢圓的離心率為C:x2a2+y2b2=1(a>b>0),△MOF的面積的最大值為32.32
(1)求橢圓C的方程;
(2)A,B為橢圓的左,右頂點,點P(1,0),當(dāng)M不與A,B重合時,射線MP交橢圓C于點N,直線AM,BN交于點T,求∠ATB的最大值.發(fā)布:2024/8/4 8:0:9組卷:143引用:5難度:0.5
把好題分享給你的好友吧~~