在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且滿足csinA=acosC.
(1)求角C大?。?br />(2)求3sinA-cos(B+π4)的最大值,并求取得最大值時(shí)角A,B的大?。?/h1>
3
π
4
【考點(diǎn)】正弦定理;三角函數(shù)的最值.
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:1283引用:86難度:0.5
相似題
-
1.在華羅庚著的《數(shù)學(xué)小叢書》中,由一個(gè)定理的推導(dǎo)過程,得出一個(gè)重要的正弦函數(shù)的不等式
≤sinsinα1+sinα2+…+sinαnn,若四邊形ABCD的四個(gè)內(nèi)角為A,B,C,D,則α1+α2+…+αnn的最大值為( ?。?/h2>sinA+sinB+sinC+sinD4發(fā)布:2025/1/5 18:30:5組卷:71引用:1難度:0.7 -
2.在△ABC中,“A<B<C”是“cos2A>cos2B>cos2C”的( ?。?/h2>
發(fā)布:2025/1/5 18:30:5組卷:190引用:11難度:0.7 -
3.已知△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,若B=30°,b=1,則
等于( )a+b+csinA+sinB+sinC發(fā)布:2025/1/3 16:0:5組卷:68引用:4難度:0.8
把好題分享給你的好友吧~~