試卷征集
加入會員
操作視頻

菁優(yōu)網(wǎng)條件①:圖(1)中tan2B=-
4
3
.條件②:圖(1)中
AD
=
2
3
AB
+
1
3
AC
.條件③:圖(2)中三棱錐A-BCD的體積為
2
3
.從以上三個條件中任選一個,補充在問題(2)中的橫線上,并加以解答.如圖(1)所示,在△ABC中,∠ACB=45°,BC=3,過點A作AD⊥BC,垂足D在線段BC上,沿AD將△ABD折起,使∠BDC=90°(如圖(2)),點E,M分別為棱BC,AC的中點.

(1)求證:CD⊥ME;
(2)已知_____,試在棱CD上確定一點N,使得EN⊥BM,并求二面角M-BN-C的余弦值.

【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/9/9 16:0:8組卷:13引用:1難度:0.4
相似題
  • 菁優(yōu)網(wǎng)1.在多面體ABCDEF中,底面ABCD是梯形,四邊形ADEF是正方形,AB∥DC,AB=AD=1,CD=2,AC=EC=
    5

    (1)求證:平面EBC⊥平面EBD;
    (2)設M為線段EC上一點,3
    EM
    =
    EC
    ,求二面角M-BD-E的平面角的余弦值.

    發(fā)布:2025/1/2 8:0:1組卷:557引用:6難度:0.3
  • 菁優(yōu)網(wǎng)2.在如圖所示的多面體中,平面ABB1A1⊥平面ABCD,四邊形ABB1A1是邊長為2的菱形,四邊形ABCD為直角梯形,四邊形BCC1B1為平行四邊形,且AB∥CD,AB⊥BC,CD=1
    (1)若E,F(xiàn)分別為A1C,BC1的中點,求證:EF⊥平面AB1C1;
    (2)若∠A1AB=60°,AC1與平面ABCD所成角的正弦值
    5
    5
    ,求二面角A1-AC1-D的余弦值.

    發(fā)布:2025/1/2 8:0:1組卷:143引用:2難度:0.4
  • 菁優(yōu)網(wǎng)3.如圖,四邊形ABCD為梯形,四邊形CDEF為矩形,平面ABCD⊥平面CDEF,∠BAD=∠ADC=90°,AB=AD=DE=
    1
    2
    CD,M為AE的中點.
    (1)證明:AC∥平面MDF;
    (2)求平面MDF與平面BCF的夾角的大?。?/h2>

    發(fā)布:2025/1/2 8:0:1組卷:141引用:1難度:0.6
小程序二維碼
把好題分享給你的好友吧~~
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應用名稱:菁優(yōu)網(wǎng) | 應用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務條款
本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內(nèi)改正