為四則運算式轉(zhuǎn)后綴表達式設(shè)計算法:
如:6+(8-2)*2/3轉(zhuǎn)換后結(jié)果為:6 8 2-2*3/+
①用棧來存儲運算符號,從左往右掃描四則運算式,遇到數(shù)字直接輸出
②若棧為空或當(dāng)前運算符號為“(“時,入棧
③若棧非空:當(dāng)棧頂為“(“則當(dāng)前運算符入棧;否則比較優(yōu)先級,當(dāng)前運算符大于棧頂元素則入棧,否則棧頂元素出棧輸出,直至棧頂元素小于或等于當(dāng)前運算符,當(dāng)前運算符入棧
④遇到右括號時,則棧頂元素依次出棧輸出,直至遇到左括號,左括號出棧但不輸出;
(1)四則運算式2*6+(3+2)/3轉(zhuǎn)后綴表達式結(jié)果為:26*32+3/+26*32+3/+。
(2)實現(xiàn)上述功能的程序如下,請在橫線處填入合適的代碼。
【考點】棧的應(yīng)用.
【答案】26*32+3/+
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:14引用:1難度:0.4
相似題
-
1.數(shù)字1,2,3依次進棧,則不可能的出棧順序是( ?。?/h2>
發(fā)布:2024/11/28 22:30:1組卷:8引用:2難度:0.5 -
2.為四則運算式“6+(8-2)*2÷3”轉(zhuǎn)逆波蘭表達“682-2*3÷+”設(shè)計算法,編程實現(xiàn)。
分析:在數(shù)學(xué)運算表達式中,運算符總是置于與之相關(guān)的兩個運算對象之間,在計算結(jié)果時,要考慮括號、運算符號的優(yōu)先性。為了程序?qū)崿F(xiàn)的方便,波蘭邏輯學(xué)家J.Lukasiewicz提出了另一種表示法,將運算符置于其運算對象之后,沒有括號,不用考慮運算符號的優(yōu)先性。這種表達式稱為后綴表達式,又叫逆波蘭表達式。
如表達式“682-2*3÷+”是四則運算式“6+(8-2)*2÷3”的逆波蘭表達式。為了處理方便,規(guī)定表達式中的數(shù)均為小于10的正整數(shù),運算符為+、-、*、÷。
(1)抽象建模
設(shè)計兩個棧bds、fh,棧bds用來存放表達式,棧fh用來暫時存放運算符。從左往右掃描四則運算式,遇到數(shù)字時,入棧bds;遇到運算符號時,根據(jù)運算符號的優(yōu)先級設(shè)計進棧與出棧。
四則運算式“6+(8-2)*2÷3”轉(zhuǎn)換規(guī)則的模擬過程如表所示:
結(jié)合表格的操作過程,用棧bds和棧fh記錄每個操作后的棧內(nèi)情況(見圖),那么在操作2中棧fh里有內(nèi)容為
(2)設(shè)計算法
基于問題的抽象與建模,解決該問題的主要算法描述如下:
從左往右遍歷四則運算式s(設(shè)中間變量為ch):
1)當(dāng)ch是數(shù)字,直接入棧bds;
2)當(dāng)ch是運算符:
a.若ch為左括號時,直接入棧fh;
b.若ch為右括號時,則將棧fh元素彈出,壓入棧bds,直到遇到左括號(左括號只
彈出,不壓入棧bds);
c.若ch為其它運算符時,如果運算符ch優(yōu)先級大于棧fh中棧頂元素的優(yōu)先級(或棧fh為空),直接入棧fh;否則,將棧fh元素依次彈出,并壓入棧bds,直到運算符ch優(yōu)先級大于棧fh中棧頂元素的優(yōu)先級(或棧fh為空);
3)將棧bds中元素依次出棧,即為該四則運算s的后綴表達式。
(3)編寫程序
實現(xiàn)上述功能的Python代碼如下,請在橫線處填入合適代碼。發(fā)布:2024/11/29 21:0:1組卷:17引用:2難度:0.3 -
3.一個棧的入棧序列為1,2,3,4,5,其出棧序列為sl,s2,s3,s4,s5。若s2是3,則s1不可能是( )
發(fā)布:2024/12/10 20:0:2組卷:15引用:4難度:0.5
把好題分享給你的好友吧~~