1852年,英國(guó)來(lái)華傳教士偉烈亞力將《孫子算經(jīng)》中“物不知數(shù)”問(wèn)題的解法傳至歐洲.1874年,英國(guó)數(shù)學(xué)家馬西森指出此法符合1801年由高斯得到的關(guān)于問(wèn)余式解法的一般性定理,因而西方稱之為“中國(guó)剩余定理”.“中國(guó)剩余定理”講的是一個(gè)關(guān)于整除的問(wèn)題,現(xiàn)有這樣一個(gè)整除問(wèn)題:將1到2020這2020個(gè)數(shù)中,能被2除余1,且被5除余1的數(shù)按從小到大的順序排成一列,構(gòu)成數(shù)列{an},則a20=( ?。?/h1>
【考點(diǎn)】歸納推理.
【答案】B
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/10/26 17:0:2組卷:214引用:6難度:0.8
相似題
-
1.按數(shù)列的排列規(guī)律猜想數(shù)列
,23,-45,87,…的第10項(xiàng)是( ?。?/h2>-169發(fā)布:2024/12/29 13:30:1組卷:100引用:5難度:0.8 -
2.根據(jù)給出的數(shù)塔猜測(cè)123456×9+7=( ?。?br />1×9+2=11
12×9+3=111
123×9+4=1111
1234×9+5=11111
12345×9+6=111111
…發(fā)布:2024/12/29 11:0:2組卷:545引用:8難度:0.9 -
3.如圖的形狀出現(xiàn)在南宋數(shù)學(xué)家楊輝所著的《詳解九章算法?商功》中,后人稱為“三角垛”.“三角垛”最上層有1個(gè)球,第二層有3個(gè)球,第三層有6個(gè)球,….設(shè)第n層有an個(gè)球,上往下n層球的總數(shù)為Sn,則( )
發(fā)布:2024/12/29 6:30:1組卷:106引用:7難度:0.7
相關(guān)試卷