如圖,C是以AB為直徑的圓O上異于A,B的點,平面PAC⊥平面ABC,△PAC為正三角形,E,F(xiàn)分別是棱PC,PB上的點,且滿足PEPC=PFPB=λ(0<λ<1).
(1)求證:BC⊥AE;
(2)是否存在λ,使得直線AP與平面AEF所成角的正弦值為2114?若存在,求出λ的值;若不存在,請說明理由.
PE
PC
=
PF
PB
21
14
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/10/20 3:0:2組卷:16引用:2難度:0.5
相似題
-
1.已知ABC-A1B1C1是各條棱長均等于1的正三棱柱,D是側(cè)棱CC1的中點,下列結(jié)論正確的是( ?。?/h2>
發(fā)布:2024/12/16 12:30:1組卷:261引用:10難度:0.6 -
2.在直角梯形ABCD中,AD∥BC,BC=2AD=2AB=2
,∠ABC=90°,如圖(1).把△ABD沿BD翻折,使得平面ABD⊥平面BCD.2
(Ⅰ)求證:CD⊥AB;
(Ⅱ)在線段BC上是否存在點N,使得AN與平面ACD所成角為60°?若存在,求出的值;若不存在,說明理由.BNBC發(fā)布:2024/12/17 16:30:1組卷:640引用:19難度:0.5 -
3.正方體ABCD-A1B1C1D1中,E、F分別是AB、B1C的中點,則EF與平面ABCD所成的角的正切值為( )
發(fā)布:2024/12/27 2:30:3組卷:87引用:8難度:0.7
把好題分享給你的好友吧~~