古希臘數(shù)學家阿波羅尼奧斯所著的八冊《圓錐曲線論(Conics)》中,首次提出了圓錐曲線的光學性質,其中之一的內容為:“若點P為橢圓上的一點,F(xiàn)1,F(xiàn)2為橢圓的兩個焦點,則點P處的切線平分∠F1PF2外角”.根據(jù)此信息回答下列問題:已知橢圓C:x28+y24=1,O為坐標原點,l是點P(2,2)處的切線,過左焦點F1作l的垂線,垂足為M,則|OM|為( ?。?/h1>
C
:
x
2
8
+
y
2
4
=
1
,
O
P
(
2
,
2
)
【考點】橢圓的幾何特征.
【答案】A
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/10/7 3:0:2組卷:140引用:3難度:0.5
相似題
-
1.已知橢圓
=1(a>b>0)的一個焦點為F(2,0),橢圓上一點P到兩個焦點的距離之和為6,則該橢圓的方程為( ?。?/h2>x2a2+y2b2發(fā)布:2024/12/29 12:30:1組卷:12引用:2難度:0.7 -
2.阿基米德(公元前287年-公元前212年)不僅是著名的物理學家,也是著名的數(shù)學家,他利用“逼近法”得到橢圓的面積除以圓周率等于橢圓的長半軸長與短半軸長的乘積.若橢圓C的對稱軸為坐標軸,焦點在x軸上,且橢圓C的離心率為
,面積為8π,則橢圓C的方程為( ?。?/h2>32發(fā)布:2024/12/29 12:0:2組卷:227引用:7難度:0.5 -
3.已知橢圓C的兩焦點分別為
、F1(-22,0),長軸長為6.F2(22,0)
(1)求橢圓C的標準方程;
(2)求以橢圓的焦點為頂點,以橢圓的頂點為焦點的雙曲線的方程.發(fā)布:2024/12/29 11:30:2組卷:434引用:6難度:0.8