已知函數(shù)f(x)=a?2x+a-22x+1,其中a為常數(shù).
(1)判斷函數(shù)f(x)的單調(diào)性并證明;
(2)若a=1,存在x∈(-2,2)使得方程f(x2+m+6)+f(-2mx)=0有解,求實(shí)數(shù)m的取值范圍.
f
(
x
)
=
a
?
2
x
+
a
-
2
2
x
+
1
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/8/31 15:0:9組卷:2引用:1難度:0.4
相似題
-
1.設(shè)f(x)是連續(xù)的偶函數(shù),且當(dāng)x>0時(shí),f(x)是單調(diào)函數(shù),則滿足f(x)=f(
)的所有x之和為( )x+3x+4發(fā)布:2024/12/29 13:30:1組卷:119引用:8難度:0.7 -
2.下列函數(shù)中,既是偶函數(shù),又在區(qū)間(0,1)上單調(diào)遞增的函數(shù)是( ?。?/h2>
發(fā)布:2024/12/29 4:0:1組卷:30引用:2難度:0.9 -
3.已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x∈(0,+∞)時(shí),f(x)=2log2(2x+1)-1,則下列說法正確的是( ?。?/h2>
發(fā)布:2024/12/28 23:30:2組卷:69引用:8難度:0.6