給出下面三個條件:
①函數(shù)y=f(x)的圖象與直線y=-1只有一個交點;
②函數(shù)f(x+l)是偶函數(shù);
③函數(shù)f(x)的兩個零點的差為2.
在這三個條件中選擇一個,將下面問題補充完整,使函數(shù)f(x)的解析式確定
問題:二次函數(shù)f(x)=ax2+bx+c滿足f(x+l)-f(x)=2x-1,且 ①②③①②③(填所選條件的序號).
(1)求f(x)的解析式;
(2)若對任意x∈[19,27],2f(log3x)+m≤0恒成立,求實數(shù)m的取值范圍;
(3)若函數(shù)g(x)=(2t-1)f(3x)-2x3x-2有且僅有一個零點,求實數(shù)t的取值范圍.
注:如果選擇多個條件分別解答,按第一個解答計分.
1
9
【答案】①②③
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:9引用:1難度:0.6
相似題
-
1.已知函數(shù)f(x)=x2+ax-b(a,b∈R).
(Ⅰ)當b=2a2-3a+1時,解關于x的不等式f(x)≤0;
(Ⅱ)若正數(shù)a,b滿足,且對于任意的x∈[1,+∞),f(x)≥0恒成立,求實數(shù)a,b的值.a+4b≤3發(fā)布:2024/12/15 8:0:1組卷:37引用:1難度:0.5 -
2.歐拉函數(shù)φ(n)的函數(shù)值等于所有不超過正整數(shù)n,且與n互質的正整數(shù)的個數(shù),例如:φ(1)=1,φ(2)=1,φ(4)=2.若?n∈N*,使得n?φ(3n)-λ?5n-2≥0成立,則實數(shù)λ的最大值為 .
發(fā)布:2024/11/10 9:0:1組卷:25引用:3難度:0.5 -
3.設函數(shù)的定義域為D,如果存在正實數(shù)k,使對任意的x∈D,都有x+k∈D,且f(x+k)>f(x)恒成立,則稱函數(shù)f(x)為D上的“k型增函數(shù)”.已知f(x)是定義在R上的奇函數(shù),且當x>0時,f(x)=|x-a|-2a,若f(x)為R上的“2022型增函數(shù)”,則實數(shù)a的取值范圍是 .
發(fā)布:2024/12/4 7:0:1組卷:79引用:2難度:0.5
把好題分享給你的好友吧~~