小明學習了平行四邊形后,對特殊四邊形的探究產(chǎn)生了興趣,發(fā)現(xiàn)了這樣一類特殊的四邊形:兩條對角線互相垂直的四邊形,叫做垂美四邊形.
(1)【理解定義】在“平行四邊形,矩形,菱形,正方形,等腰梯形”中,一定是垂美四邊形的是 菱形、正方形菱形、正方形.
(2)【探究性質(zhì)】如圖1,在垂美四邊形ABCD中,對角線AC,BD相交于點O,猜想AB2,BC2,CD2,AD2之間的數(shù)量關(guān)系,并寫出證明過程.
(3)【綜合運用】如圖2,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,分別以BC,AB為腰向外側(cè)作等腰Rt△ABD和等腰Rt△CBE,且∠ABD=∠CBE=90°,連接DE.
①圖中哪個四邊形是垂美四邊形?并證明你的結(jié)論.
②求DE的長(直接寫出答案).
【考點】四邊形綜合題.
【答案】菱形、正方形
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:106引用:2難度:0.3
相似題
-
1.如圖,∠BOD=45°,BO=DO,點A在OB上,四邊形ABCD是矩形,連接AC,BD交于點E,連接OE交AD于點F.下列4個判斷:①OE⊥BD;②∠ADB=30°;③DF=
AF;④若點G是線段OF的中點,則△AEG為等腰直角三角形,其中,判斷正確的是 .(填序號)2發(fā)布:2024/12/23 18:30:1組卷:1469引用:7難度:0.3 -
2.我們知道,一個正方形的任意3個頂點都可連成一個等腰三角形,進一步探究是否存在以下形狀的四邊形,它的任意3個頂點都可連成一個等腰三角形:
(1)不是正方形的平行四邊形;
(2)梯形;
(3)既不是平行四邊形,也不是梯形的四邊形.
如果存在滿足條件的四邊形,請分別畫出(只需各畫一個,并說明其形狀或邊、角關(guān)系特征,不必說明理由).發(fā)布:2025/1/2 8:0:1組卷:7引用:1難度:0.2 -
3.四邊形ABCD是矩形,點E是射線BC上一點,連接AC,DE.
(1)如圖1,點E在邊BC的延長線上,BE=AC,若∠ACB=40°,求∠E的度數(shù);
(2)如圖2,點E在邊BC的延長線上,BE=AC,若M是DE的中點,連接AM,CM,求證:AM⊥MC;
(3)如圖3,點E在邊BC上,射線AE交射線DC于點F,∠AED=2∠AEB,AF=4,AB=4,則CE=.(直接寫出結(jié)果)5發(fā)布:2024/12/23 18:30:1組卷:1410引用:10難度:0.4
把好題分享給你的好友吧~~