(1)【教材呈現(xiàn)】以下是某數(shù)學教材某頁的部分內(nèi)容(請?zhí)顚憴M線中的依據(jù)):
例4、如圖,在△ABC中,D是邊BC的中點,過點C畫直線CE,使CE∥AB,交AD的延長線于點E,求證:AD=ED.
證明:∵CE∥AB(已知),∴∠ABD=∠ECD,∠BAD=∠CED.
∵D為BC邊中點,∴BD=CD.
在△ABD與△ECD中,
∵∠ABD=∠ECD ∠BAD=∠CED BD=CD
,
∴△ABD≌△ECD ( AASAAS)
∴AD=ED( 全等三角形的對應邊相等全等三角形的對應邊相等)
(2)【方法應用】如圖①,在△ABC中,AB=6,AC=4,則BC邊上的中線AD長度的取值范圍是 1<AD<51<AD<5.
(3)【猜想證明】如圖②,在四邊形ABCD中,AB//CD,點E是BC的中點,若AE是∠BAD的平分線,試猜想線段AB、AD、DC之間的數(shù)量關系,并證明你的猜想.
∠ ABD =∠ ECD |
∠ BAD =∠ CED |
BD = CD |
【考點】四邊形綜合題.
【答案】AAS;全等三角形的對應邊相等;1<AD<5
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/10/16 4:0:1組卷:185引用:1難度:0.2
相似題
-
1.我們知道,一個正方形的任意3個頂點都可連成一個等腰三角形,進一步探究是否存在以下形狀的四邊形,它的任意3個頂點都可連成一個等腰三角形:
(1)不是正方形的平行四邊形;
(2)梯形;
(3)既不是平行四邊形,也不是梯形的四邊形.
如果存在滿足條件的四邊形,請分別畫出(只需各畫一個,并說明其形狀或邊、角關系特征,不必說明理由).發(fā)布:2025/1/2 8:0:1組卷:7引用:1難度:0.2 -
2.如圖,∠BOD=45°,BO=DO,點A在OB上,四邊形ABCD是矩形,連接AC,BD交于點E,連接OE交AD于點F.下列4個判斷:①OE⊥BD;②∠ADB=30°;③DF=
AF;④若點G是線段OF的中點,則△AEG為等腰直角三角形,其中,判斷正確的是 .(填序號)2發(fā)布:2024/12/23 18:30:1組卷:1465引用:7難度:0.3 -
3.四邊形ABCD是矩形,點E是射線BC上一點,連接AC,DE.
(1)如圖1,點E在邊BC的延長線上,BE=AC,若∠ACB=40°,求∠E的度數(shù);
(2)如圖2,點E在邊BC的延長線上,BE=AC,若M是DE的中點,連接AM,CM,求證:AM⊥MC;
(3)如圖3,點E在邊BC上,射線AE交射線DC于點F,∠AED=2∠AEB,AF=4,AB=4,則CE=.(直接寫出結(jié)果)5發(fā)布:2024/12/23 18:30:1組卷:1404引用:10難度:0.4
把好題分享給你的好友吧~~