試卷征集
加入會員
操作視頻

通過類比聯(lián)想、引申拓展研究典型題目,可達(dá)到解一題知一類的目的.下面是一個(gè)案例,請補(bǔ)充完整.
?菁優(yōu)網(wǎng)
原題:如圖1,點(diǎn)E,F(xiàn)分別在正方形ABCD的邊BC,CD上,∠EAF=45°,連接EF,則EF=BE+DF,試說明理由.
(1)思路梳理
∵AB=CD,∴把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至△ADG,可使AB與AD重合.∵∠ADC=∠B=90°∠FDG=180°,∴點(diǎn)F,D,G共線.根據(jù)
SAS
SAS
(從“SSS,ASA,AAS,SAS”中選擇填寫),易證△AFG≌
△AFE
△AFE
,得EF=BE+DF.
(2)類比引申
如圖2,四邊形ABCD中,AB=AD,∠BAD=90°,點(diǎn)E,F(xiàn)分別在邊BC,CD上,∠EAF=45°.若∠B,∠D都不是直角,則當(dāng)∠B與∠D滿足等量關(guān)系
∠B+∠D=180°
∠B+∠D=180°
時(shí),仍有EF=BE+DF.
(3)聯(lián)想拓展
如圖3,在△ABC中,∠BAC=90°,AB=AC,點(diǎn)D,E均在邊BC上,且∠DAE=45°.猜想BD,DE,EC應(yīng)滿足的等量關(guān)系,并寫出推理過程.
(4)思維深化
如圖4,在△ABC中,∠BAC=60°,AB=AC,點(diǎn)D,E均在直線BC上,點(diǎn)D在點(diǎn)E的左邊,且∠DAE=30°,當(dāng)AB=4,BD=1時(shí),直接寫出CE的長.

【考點(diǎn)】四邊形綜合題
【答案】SAS;△AFE;∠B+∠D=180°
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/24 14:0:35組卷:534引用:4難度:0.1
相似題
  • 1.我們知道,一個(gè)正方形的任意3個(gè)頂點(diǎn)都可連成一個(gè)等腰三角形,進(jìn)一步探究是否存在以下形狀的四邊形,它的任意3個(gè)頂點(diǎn)都可連成一個(gè)等腰三角形:
    (1)不是正方形的平行四邊形;
    (2)梯形;
    (3)既不是平行四邊形,也不是梯形的四邊形.
    如果存在滿足條件的四邊形,請分別畫出(只需各畫一個(gè),并說明其形狀或邊、角關(guān)系特征,不必說明理由).

    發(fā)布:2025/1/2 8:0:1組卷:7引用:1難度:0.2
  • 菁優(yōu)網(wǎng)2.如圖,∠BOD=45°,BO=DO,點(diǎn)A在OB上,四邊形ABCD是矩形,連接AC,BD交于點(diǎn)E,連接OE交AD于點(diǎn)F.下列4個(gè)判斷:①OE⊥BD;②∠ADB=30°;③DF=
    2
    AF;④若點(diǎn)G是線段OF的中點(diǎn),則△AEG為等腰直角三角形,其中,判斷正確的是
    .(填序號)

    發(fā)布:2024/12/23 18:30:1組卷:1468引用:7難度:0.3
  • 3.四邊形ABCD是矩形,點(diǎn)E是射線BC上一點(diǎn),連接AC,DE.
    (1)如圖1,點(diǎn)E在邊BC的延長線上,BE=AC,若∠ACB=40°,求∠E的度數(shù);
    (2)如圖2,點(diǎn)E在邊BC的延長線上,BE=AC,若M是DE的中點(diǎn),連接AM,CM,求證:AM⊥MC;
    (3)如圖3,點(diǎn)E在邊BC上,射線AE交射線DC于點(diǎn)F,∠AED=2∠AEB,AF=4
    5
    ,AB=4,則CE=
    .(直接寫出結(jié)果)
    菁優(yōu)網(wǎng)

    發(fā)布:2024/12/23 18:30:1組卷:1408引用:10難度:0.4
小程序二維碼
把好題分享給你的好友吧~~
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個(gè)工作日內(nèi)改正