已知函數(shù)f(x)=ex-kx-k,k∈R.
(1)討論函數(shù)f(x)的單調(diào)性;
(2)當(dāng)k=1時(shí),令g(x)=2f(x)x2.
(?。┳C明:當(dāng)x>0時(shí),g(x)>1;
(ⅱ)若數(shù)列{xn}滿足:x1=13,exn+1=g(xn),證明:xn<ln(1+12n).
g
(
x
)
=
2
f
(
x
)
x
2
x
1
=
1
3
e
x
n
+
1
=
g
(
x
n
)
x
n
<
ln
(
1
+
1
2
n
)
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:190引用:2難度:0.3
相似題
-
1.已知函數(shù)f(x)=x3-2kx2+x-3在R上不單調(diào),則k的取值范圍是 ;
發(fā)布:2024/12/29 13:0:1組卷:226引用:3難度:0.8 -
2.在R上可導(dǎo)的函數(shù)f(x)的圖象如圖示,f′(x)為函數(shù)f(x)的導(dǎo)數(shù),則關(guān)于x的不等式x?f′(x)<0的解集為( ?。?/h2>
發(fā)布:2024/12/29 13:0:1組卷:262引用:7難度:0.9 -
3.已知函數(shù)f(x)=ax2+x-xlnx(a∈R)
(Ⅰ)若函數(shù)f(x)在(0,+∞)上單調(diào)遞增,求實(shí)數(shù)a的取值范圍;
(Ⅱ)若函數(shù)f(x)有兩個(gè)極值點(diǎn)x1,x2(x1≠x2),證明:.x1?x2>e2發(fā)布:2024/12/29 13:30:1組卷:138引用:2難度:0.2
把好題分享給你的好友吧~~