試卷征集
加入會員
操作視頻

《見微知著》談到:從一個簡單的經(jīng)典問題出發(fā),從特殊到一般,由簡單到復雜,從部分到整體,由低維到高維,知識與方法上的類比是探索發(fā)展的重要途徑,是發(fā)現(xiàn)新問題、新結論的重要方法.
例如,已知ab=1,求證:
1
1
+
a
+
1
1
+
b
=
1

證明:原式=
ab
ab
+
a
+
1
1
+
b
=
b
1
+
b
+
1
1
+
b
=
1

波利亞在《怎樣解題》中也指出:“當你找到第一個蘑菇或作出第一個發(fā)現(xiàn)后,再四處看看,它們總是成群生長.”類似上述問題,我們有更多的式子滿足以上特征.
請根據(jù)上述材料解答下列問題:
(1)已知ab=1,求
1
1
+
a
2
+
1
1
+
b
2
的值;
(2)若abc=1,解方程
5
ax
ab
+
a
+
1
+
5
bx
bc
+
b
+
1
+
5
cx
ca
+
c
+
1
=
1
;
(3)若正數(shù)a,b滿足ab=1,求
M
=
1
1
+
a
+
1
1
+
2
b
的最小值.

【考點】類比推理
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:72引用:13難度:0.5
相似題
  • 1.已知
    tan
    x
    +
    π
    4
    =
    1
    +
    tanx
    1
    -
    tanx
    x
    +
    π
    4
    ,那么函數(shù)y=tanx的周期為π.類比可推出:已知x∈R且
    f
    x
    +
    π
    =
    1
    +
    f
    x
    1
    -
    f
    x
    ,那么函數(shù)y=f(x)的周期是( ?。?/h2>

    發(fā)布:2025/1/6 8:0:1組卷:11引用:1難度:0.7
  • 2.函數(shù)y=tanx滿足tan(x
    +
    π
    4
    )=
    1
    +
    tanx
    1
    -
    tanx
    由該等式也能推證出y=tanx的周期為π,已知函數(shù)y=f(x)滿足f(x+a)=
    1
    +
    f
    x
    1
    -
    f
    x
    ,x∈R.a(chǎn)為非零的常數(shù),根據(jù)上述論述我們可以類比出函數(shù)f(x)的周期為

    發(fā)布:2025/1/6 8:0:1組卷:5引用:1難度:0.7
  • 3.
    x
    +
    π
    4
    tan
    x
    +
    π
    4
    =
    1
    +
    tanx
    1
    -
    tanx
    ,則y=tanx的周期為π.類比可推出:設x∈R且
    f
    x
    +
    π
    =
    1
    +
    f
    x
    1
    -
    f
    x
    ,則y=f(x)的周期是( ?。?/h2>

    發(fā)布:2025/1/6 8:0:1組卷:36引用:1難度:0.5
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應用名稱:菁優(yōu)網(wǎng) | 應用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務條款
本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內(nèi)改正