用數(shù)學歸納法證明“1+a+a2+…+an+1=1-an+21-a,(a≠1,n∈N*)”時,在驗證n=1成立時,左邊應該是( ?。?/h1>
1
-
a
n
+
2
1
-
a
,
(
a
≠
1
,
n
∈
N
*
)
【考點】數(shù)學歸納法.
【答案】A
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:412引用:51難度:0.9
相似題
-
1.用數(shù)學歸納法證明
+1n+1+…+1n+2≥13n,從n=k到n=k+1,不等式左邊需添加的項是( ?。?/h2>56A. +13k+1+13k+213k+3B. +13k+1+13k+2-13k+31k+1C. 13k+1D. 13k+3發(fā)布:2024/12/17 12:30:2組卷:387引用:10難度:0.9 -
2.用數(shù)學歸納法證明
時,在證明n=1等式成立時,此時等式的左邊是( ?。?/h2>1+a+a2+…+a2(n+1)=1-a2n+31-a(a≠1,n∈N*)A.1 B.1+a C.1+a+a2+a3 D.1+a+a2+a3+a4 發(fā)布:2024/12/29 9:0:1組卷:287引用:3難度:0.8 -
3.已知n為正整數(shù),請用數(shù)學歸納法證明:1+
+12+……+131n.<2n發(fā)布:2024/10/27 17:0:2組卷:423引用:1難度:0.7
把好題分享給你的好友吧~~