當(dāng)前位置:
2022-2023學(xué)年湖北省鄖陽(yáng)中學(xué)、恩施高中、隨州二中、襄陽(yáng)三中高二(下)聯(lián)考數(shù)學(xué)試卷(5月份)>
試題詳情
設(shè)定義在R上的函數(shù)f(x)=ex-ax(a∈R).
(1)若存在x0∈[1,+∞),使得f(x0)<e-a成立,求實(shí)數(shù)a的取值范圍;
(2)定義:如果實(shí)數(shù)s,t,r滿足|s-r|≤|t-r|,那么稱s比t更接近r.對(duì)于(1)中的a及x≥1,問:ex和ex-1+a哪個(gè)更接近lnx?并說明理由.
e
x
【考點(diǎn)】利用導(dǎo)數(shù)研究函數(shù)的最值.
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:111引用:6難度:0.3
相似題
-
1.已知函數(shù)
,若關(guān)于x的不等式f(x)=ln2+x2-x+1對(duì)任意x∈(0,2)恒成立,則實(shí)數(shù)k的取值范圍( )f(kex)+f(-12x)>2發(fā)布:2025/1/5 18:30:5組卷:295引用:2難度:0.4 -
2.已知函數(shù)f(x)=ax3+x2+bx(a,b∈R)的圖象在x=-1處的切線斜率為-1,且x=-2時(shí),y=f(x)有極值.
(1)求f(x)的解析式;
(2)求f(x)在[-3,2]上的最大值和最小值.發(fā)布:2024/12/29 12:30:1組卷:42引用:3難度:0.5 -
3.已知函數(shù)f(x)=
.ex-ax21+x
(1)若a=0,討論f(x)的單調(diào)性.
(2)若f(x)有三個(gè)極值點(diǎn)x1,x2,x3.
①求a的取值范圍;
②求證:x1+x2+x3>-2.發(fā)布:2024/12/29 13:0:1組卷:183引用:2難度:0.1
把好題分享給你的好友吧~~