第一步:閱讀材料,掌握知識.
要把多項式am+an+bm+bn分解因式,可以先把它的前兩項分成一組,并提出公因式a,再把它的后兩項分成一組,提出公因式b,從而得:
am+an+bm+bn=a(m+n)+b(m+n).這時,由于a(m+n)+b(m+n)中又有公因式(m+n),于是可提出(m+n),從而得到(m+n)(a+b),因此有:
am+an+bn+bn=(am+an)+(bm+bn)=a(m+n)+b(m+n)=(m+n)(a+b).
這種方法稱為分組法.
第二步:理解知識,嘗試填空.
(1)ab-ac+bc-b2=(ab-ac)+(bc-b2)=a(b-c)-b(b-c)=(b-c)(a-b)(b-c)(a-b).
第三步:應用知識,解決問題.
(2)因式分解:x2y-4y-2x2+8.
第四步:提煉思想,拓展應用.
(3)已知三角形的三邊長分別是a、b、c,且滿足a2+2b2+c2=2b(a+c),試判斷這個三角形的形狀,并說明理由.
【考點】三角形綜合題.
【答案】(b-c)(a-b)
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:591引用:7難度:0.5
相似題
-
1.已知直角△ABC,∠BAC=90°,D是斜邊BC的中點,E、F分別是AB、AC邊上的點,且DE⊥DF,連接EF.
(1)如圖1,求證:∠BED=∠AFD;
(2)如圖1,求證:BE2+CF2=EF2;
(3)如圖2,當∠ABC=45°,若BE=4,CF=3,求△DEF的面積.發(fā)布:2024/12/23 14:0:1組卷:181引用:3難度:0.2 -
2.一副三角板如圖1擺放,∠C=∠DFE=90°,∠B=30°,∠E=45°,點F在BC上,點A在DF上,且AF平分∠CAB,現(xiàn)將三角板DFE繞點F順時針旋轉(zhuǎn)(當點D落在射線FB上時停止旋轉(zhuǎn)).
(1)當∠AFD=°時,DF∥AC;當∠AFD=°時,DF⊥AB;
(2)在旋轉(zhuǎn)過程中,DF與AB的交點記為P,如圖2,若△AFP有兩個內(nèi)角相等,求∠APD的度數(shù);
(3)當邊DE與邊AB、BC分別交于點M、N時,如圖3,若∠AFM=2∠BMN,比較∠FMN與∠FNM的大小,并說明理由.發(fā)布:2024/12/23 18:30:1組卷:1658引用:10難度:0.1 -
3.已知A(0,4),B(-4,0),D(9,4),C(12,0),動點P從點A出發(fā),在線段AD上,以每秒1個單位的速度向點D運動:動點Q從點C出發(fā),在線段BC上,以每秒2個單位的速度向點B運動,點P、Q同時出發(fā),當其中一個點到達終點時,另一個點隨之停止運動,設運動時間為t(秒).
(1)當t=秒時,PQ平分線段BD;
(2)當t=秒時,PQ⊥x軸;
(3)當時,求t的值.∠PQC=12∠D發(fā)布:2024/12/23 15:0:1組卷:140引用:3難度:0.1
把好題分享給你的好友吧~~