為了紀(jì)念中國古代數(shù)學(xué)家祖沖之在圓周率上的貢獻(xiàn),聯(lián)合國教科文組織第四十屆大會上把每年的3月14日定為“國際數(shù)學(xué)日”.2023年3月14日,某學(xué)校舉行數(shù)學(xué)文化節(jié)活動,其中一項活動是數(shù)獨比賽(注:數(shù)獨是源自18世紀(jì)瑞士的一種數(shù)學(xué)游戲,又稱九宮格).甲、乙兩位同學(xué)進(jìn)入了最后決賽,進(jìn)行數(shù)獨王的爭奪.決賽規(guī)則如下:進(jìn)行兩輪數(shù)獨比賽,每人每輪比賽在規(guī)定時間內(nèi)做對得1分,沒做對得0分,兩輪結(jié)束總得分高的為數(shù)獨王,得分相同則進(jìn)行加賽.根據(jù)以往成績分析,已知甲每輪做對的概率為0.8,乙每輪做對的概率為0.75,且每輪比賽中甲、乙是否做對互不影響,各輪比賽甲、乙是否做對也互不影響.
(1)求兩輪比賽結(jié)束乙得分為1分的概率;
(2)求不進(jìn)行加賽甲就獲得數(shù)獨王的概率.
【考點】相互獨立事件和相互獨立事件的概率乘法公式.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 8:0:9組卷:203引用:5難度:0.7
相似題
-
1.甲、乙兩人進(jìn)行圍棋比賽,共比賽2n(n∈N*)局,且每局甲獲勝的概率和乙獲勝的概率均為
.如果某人獲勝的局?jǐn)?shù)多于另一人,則此人贏得比賽.記甲贏得比賽的概率為P(n),則( ?。?/h2>12發(fā)布:2024/12/29 12:0:2組卷:242引用:6難度:0.6 -
2.小王同學(xué)進(jìn)行投籃練習(xí),若他第1球投進(jìn),則第2球投進(jìn)的概率為
;若他第1球投不進(jìn),則第2球投進(jìn)的概率為23.若他第1球投進(jìn)概率為13,他第2球投進(jìn)的概率為( ?。?/h2>23發(fā)布:2024/12/29 12:0:2組卷:293引用:5難度:0.7 -
3.某市在市民中發(fā)起了無償獻(xiàn)血活動,假設(shè)每個獻(xiàn)血者到達(dá)采血站是隨機(jī)的,并且每個獻(xiàn)血者到達(dá)采血站和其他的獻(xiàn)血者到達(dá)采血站是相互獨立的.在所有人中,通常45%的人的血型是O型,如果一天內(nèi)有10位獻(xiàn)血者到達(dá)采血站獻(xiàn)血,用隨機(jī)模擬的方法來估計一下,這10位獻(xiàn)血者中至少有4位的血型是O型的概率.
發(fā)布:2024/12/29 11:0:2組卷:1引用:1難度:0.7
把好題分享給你的好友吧~~