直線l:(m+1)x+(2m+1)y-7m-4=0,圓C:x2+y2-6x-4y-3=0.
(1)證明:直線l恒過定點P,并求出定點P的坐標;
(2)當直線l被圓C截得的弦最短時,求此時l的方程;
(3)設直線l與圓C交于A,B兩點,當△ABC的面積最大時,求直線l方程.
【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/10/12 4:0:3組卷:221引用:5難度:0.5
相似題
-
1.已知x,y滿足x2+y2=1,則
的最小值為( ?。?/h2>y-2x-1發(fā)布:2024/12/29 10:30:1組卷:27引用:2難度:0.9 -
2.在平面直角坐標系xOy中,已知直線ax-y+2=0與圓C:x2+y2-2x-3=0交于A,B兩點,若鈍角△ABC的面積為
,則實數a的值是( ?。?/h2>3發(fā)布:2025/1/5 18:30:5組卷:109引用:1難度:0.6 -
3.已知圓C:x2+y2+2ay=0(a>0)截直線
所得的弦長為3x-y=0,則圓C與圓C':(x-1)2+(y+1)2=1的位置關系是( ?。?/h2>23發(fā)布:2025/1/1 11:0:5組卷:86引用:4難度:0.6
把好題分享給你的好友吧~~