已知函數(shù)f(x)=logax(a>0且a≠1).
(Ⅰ)若f(a+4)≤f(3a),求實數(shù)a的取值范圍;
(Ⅱ)設(shè)a=2,函數(shù)g(x)=-f2(x)+(3-2m)f(x)+m+2(0<m≤1).
(i)若x∈[1,2m],證明:g(x)≤103;
(ii)若x∈[12,2],求|g(x)|的最大值h(m).
g
(
x
)
≤
10
3
x
∈
[
1
2
,
2
]
【考點】函數(shù)的最值.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:133引用:4難度:0.2
相似題
-
1.已知函數(shù)f(x)=loga(1-x)+loga(3+x)(a>0且a≠1)在定義域內(nèi)存在最大值,且最大值為2,g(x)=
,若對任意x1∈[-1,m?2x-12x],存在x2∈[-1,1],使得f(x1)≥g(x2),則實數(shù)m的取值可以是( ?。?/h2>12發(fā)布:2024/12/29 13:30:1組卷:133引用:2難度:0.5 -
2.函數(shù)f(x)=
x3-4x+m在[0,3]上的最小值為4,則m的值為( ?。?/h2>13發(fā)布:2024/12/29 3:0:1組卷:109引用:4難度:0.9 -
3.已知f(x)=|lnx|,x1,x2是方程f(x)=a(a∈R)的兩根,且x1<x2,則
的最大值是 .ax1x22發(fā)布:2024/12/29 13:30:1組卷:120引用:4難度:0.5
把好題分享給你的好友吧~~